enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Adenosine diphosphate - Wikipedia

    en.wikipedia.org/wiki/Adenosine_diphosphate

    ADP can be converted, or powered back to ATP through the process of releasing the chemical energy available in food; in humans, this is constantly performed via aerobic respiration in the mitochondria. [2] Plants use photosynthetic pathways to convert and store energy from sunlight, also conversion of ADP to ATP. [3] Animals use the energy ...

  3. Cellular respiration - Wikipedia

    en.wikipedia.org/wiki/Cellular_respiration

    Aerobic respiration requires oxygen (O 2) in order to create ATP.Although carbohydrates, fats and proteins are consumed as reactants, aerobic respiration is the preferred method of pyruvate production in glycolysis, and requires pyruvate be transported the mitochondria in order to be oxidized by the citric acid cycle.

  4. High-energy phosphate - Wikipedia

    en.wikipedia.org/wiki/High-energy_phosphate

    The squiggle notation was invented by Fritz Albert Lipmann, who first proposed ATP as the main energy transfer molecule of the cell, in 1941. [4] Lipmann's notation emphasizes the special nature of these bonds. [5] Stryer states: ATP is often called a high energy compound and its phosphoanhydride bonds are referred to as high-energy bonds.

  5. Chemiosmosis - Wikipedia

    en.wikipedia.org/wiki/Chemiosmosis

    Chemiosmosis is the movement of ions across a semipermeable membrane bound structure, down their electrochemical gradient.An important example is the formation of adenosine triphosphate (ATP) by the movement of hydrogen ions (H +) across a membrane during cellular respiration or photosynthesis.

  6. Light-dependent reactions - Wikipedia

    en.wikipedia.org/wiki/Light-dependent_reactions

    A proton gradient is created across the thylakoid membrane (6) as protons (3) are transported from the chloroplast stroma (4) to the thylakoid lumen (5). Through chemiosmosis, ATP (9) is produced where ATP synthase (1) binds an inorganic phosphate group (8) to an ADP molecule (7).

  7. Energy charge - Wikipedia

    en.wikipedia.org/wiki/Energy_charge

    If ATP synthesis is momentarily insufficient to maintain an adequate energy charge, AMP can be converted by two different pathways to hypoxanthine and ribose-5P, followed by irreversible oxidation of hypoxanthine to uric acid. This helps to buffer the adenylate energy charge by decreasing the total {ATP+ADP+AMP} concentration. [10]

  8. Substrate-level phosphorylation - Wikipedia

    en.wikipedia.org/wiki/Substrate-level_phosphory...

    Substrate-level phosphorylation exemplified with the conversion of ADP to ATP. Substrate-level phosphorylation is a metabolism reaction that results in the production of ATP or GTP supported by the energy released from another high-energy bond that leads to phosphorylation of ADP or GDP to ATP or GTP (note that the reaction catalyzed by creatine kinase is not considered as "substrate-level ...

  9. ATP hydrolysis - Wikipedia

    en.wikipedia.org/wiki/ATP_hydrolysis

    Structure of ATP Structure of ADP Four possible resonance structures for inorganic phosphate. ATP hydrolysis is the catabolic reaction process by which chemical energy that has been stored in the high-energy phosphoanhydride bonds in adenosine triphosphate (ATP) is released after splitting these bonds, for example in muscles, by producing work in the form of mechanical energy.