enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Electron transport chain - Wikipedia

    en.wikipedia.org/wiki/Electron_transport_chain

    An electron transport chain (ETC [1]) is a series of protein complexes and other molecules which transfer electrons from electron donors to electron acceptors via redox reactions (both reduction and oxidation occurring simultaneously) and couples this electron transfer with the transfer of protons (H + ions) across a membrane.

  3. Reverse electron flow - Wikipedia

    en.wikipedia.org/wiki/Reverse_electron_flow

    Reverse electron flow (also known as reverse electron transport) is a mechanism in microbial metabolism. Chemolithotrophs using an electron donor with a higher redox potential than NAD(P) + /NAD(P)H , such as nitrite or sulfur compounds, must use energy to reduce NAD(P) + .

  4. Oxidative phosphorylation - Wikipedia

    en.wikipedia.org/wiki/Oxidative_phosphorylation

    The chain of redox reactions driving the flow of electrons through the electron transport chain, from electron donors such as NADH to electron acceptors such as oxygen and hydrogen (protons), is an exergonic process – it releases energy, whereas the synthesis of ATP is an endergonic process, which requires an input of energy.

  5. Hydrogen carrier - Wikipedia

    en.wikipedia.org/wiki/Hydrogen_carrier

    The main role of these is to transport hydrogen atom to electron transport chain which will change ADP to ATP by adding one phosphate during metabolic processes (e.g. photosynthesis and respiration). Hydrogen carrier participates in an oxidation-reduction reaction [2] by getting reduced due to the acceptance of a Hydrogen.

  6. Respiratory complex I - Wikipedia

    en.wikipedia.org/wiki/Respiratory_complex_I

    There are three energy-transducing enzymes in the electron transport chain - NADH:ubiquinone oxidoreductase (complex I), Coenzyme Q – cytochrome c reductase (complex III), and cytochrome c oxidase (complex IV). [1] Complex I is the largest and most complicated enzyme of the electron transport chain. [2] The reaction catalyzed by complex I is:

  7. Mitochondrial matrix - Wikipedia

    en.wikipedia.org/wiki/Mitochondrial_matrix

    The electron transport chain is responsible for establishing a pH and electrochemical gradient that facilitates the production of ATP through the pumping of protons. The gradient also provides control of the concentration of ions such as Ca 2+ driven by the mitochondrial membrane potential. [ 1 ]

  8. Pressure flow hypothesis - Wikipedia

    en.wikipedia.org/wiki/Pressure_Flow_Hypothesis

    As a result, the concentration of sucrose increases in the sieve tube elements. This causes water to move into the sieve tube element by osmosis, creating pressure that pushes the sap down the tube. In sugar sinks, cells actively transport sucrose out of the sieve tube elements, first to the apoplast and then to the symplast of the sink.

  9. Mitochondrial shuttle - Wikipedia

    en.wikipedia.org/wiki/Mitochondrial_shuttle

    The mitochondrial shuttles are biochemical transport systems used to transport reducing agents across the inner mitochondrial membrane. NADH as well as NAD+ cannot cross the membrane, but it can reduce another molecule like FAD and [QH 2] that can cross the membrane, so that its electrons can reach the electron transport chain.