Search results
Results from the WOW.Com Content Network
Scheme of a solid-oxide fuel cell. A solid oxide fuel cell (or SOFC) is an electrochemical conversion device that produces electricity directly from oxidizing a fuel. Fuel cells are characterized by their electrolyte material; the SOFC has a solid oxide or ceramic electrolyte.
A protonic ceramic fuel cell or PCFC is a fuel cell based around a ceramic, solid, electrolyte material as the proton conductor from anode to cathode. [1] These fuel cells produce electricity by removing an electron from a hydrogen atom, pushing the charged hydrogen atom through the ceramic membrane, and returning the electron to the hydrogen ...
A fuel cell is an electrochemical cell that converts the chemical energy of a fuel (often hydrogen) and an oxidizing agent (often oxygen) [1] into electricity through a pair of redox reactions. [2] Fuel cells are different from most batteries in requiring a continuous source of fuel and oxygen (usually from air) to sustain the chemical reaction ...
Extremely expensive materials were used and the fuel cells required very pure hydrogen and oxygen. Early fuel cells tended to require inconveniently high operating temperatures that were a problem in many applications. However, fuel cells were seen to be desirable due to the large amounts of fuel available (hydrogen and oxygen). [citation needed]
The main polycarbonate material is produced by the reaction of bisphenol A (BPA) and phosgene COCl 2. The overall reaction can be written as follows: The first step of the synthesis involves treatment of bisphenol A with sodium hydroxide, which deprotonates the hydroxyl groups of the bisphenol A. [6] (HOC 6 H 4) 2 CMe 2 + 2 NaOH → Na 2 (OC 6 ...
Diagram of a phosphoric acid fuel cell. Phosphoric acid fuel cells (PAFC) are a type of fuel cell that uses liquid phosphoric acid as an electrolyte. They were the first fuel cells to be commercialized. Developed in the mid-1960s and field-tested since the 1970s, they have improved significantly in stability, performance, and cost.
A general diagram for an enzymatic biofuel cell using Glucose and Oxygen.The blue area indicates the electrolyte.. Enzymatic biofuel cells work on the same general principles as all fuel cells: use a catalyst to separate electrons from a parent molecule and force it to go around an electrolyte barrier through a wire to generate an electric current.
The cell produces energy by combining carbon and oxygen, which releases carbon dioxide as a by-product. [3] It is also called coal fuel cells (CFCs), carbon-air fuel cells (CAFCs), direct carbon/coal fuel cells (DCFCs), and DC-SOFC. The total reaction of the cell is C + O 2 → CO 2. The process in half cell notation: Anode: C + 2O 2− → CO ...