Search results
Results from the WOW.Com Content Network
The cover tree is a type of data structure in computer science that is specifically designed to facilitate the speed-up of a nearest neighbor search. It is a refinement of the Navigating Net data structure, and related to a variety of other data structures developed for indexing intrinsically low-dimensional data.
In computer science, an in-tree or parent pointer tree is an N-ary tree data structure in which each node has a pointer to its parent node, but no pointers to child nodes. When used to implement a set of stacks , the structure is called a spaghetti stack , cactus stack or saguaro stack (after the saguaro , a kind of cactus). [ 1 ]
A common implementation of a heap is the binary heap, in which the tree is a complete [2] binary tree (see figure). The heap data structure, specifically the binary heap, was introduced by J. W. J. Williams in 1964, as a data structure for the heapsort sorting algorithm. [3]
A pairing heap is a type of heap data structure with relatively simple implementation and excellent practical amortized performance, introduced by Michael Fredman, Robert Sedgewick, Daniel Sleator, and Robert Tarjan in 1986. [1] Pairing heaps are heap-ordered multiway tree structures, and can be considered simplified Fibonacci heaps.
Each node of a ternary search tree stores a single character, an object (or a pointer to an object depending on implementation), and pointers to its three children conventionally named equal kid, lo kid and hi kid, which can also be referred respectively as middle (child), lower (child) and higher (child). [1]
FreeBSD Implementation, used for paging, forwarding and other things. Linux Kernel Implementation, used for the page cache, among other things. GNU C++ Standard library has a trie implementation; Java implementation of Concurrent Radix Tree, by Niall Gallagher; C# implementation of a Radix Tree
CGAL : Computational Geometry Algorithms Library in C++ contains a robust implementation of Range Trees; Boost.Icl offers C++ implementations of interval sets and maps. IntervalTree (Python) - a centered interval tree with AVL balancing, compatible with tagged intervals; Interval Tree (C#) - an augmented interval tree, with AVL balancing
This enables clients to work through the Component interface to treat Leaf and Composite objects uniformly: Leaf objects perform a request directly, and Composite objects forward the request to their child components recursively downwards the tree structure. This makes client classes easier to implement, change, test, and reuse.