enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Expectation–maximization algorithm - Wikipedia

    en.wikipedia.org/wiki/Expectationmaximization...

    The Expectation Maximization Algorithm: A short tutorial, A self-contained derivation of the EM Algorithm by Sean Borman. The EM Algorithm, by Xiaojin Zhu. EM algorithm and variants: an informal tutorial by Alexis Roche. A concise and very clear description of EM and many interesting variants.

  3. EM algorithm and GMM model - Wikipedia

    en.wikipedia.org/wiki/EM_Algorithm_And_GMM_Model

    The EM algorithm consists of two steps: the E-step and the M-step. Firstly, the model parameters and the () can be randomly initialized. In the E-step, the algorithm tries to guess the value of () based on the parameters, while in the M-step, the algorithm updates the value of the model parameters based on the guess of () of the E-step.

  4. Baum–Welch algorithm - Wikipedia

    en.wikipedia.org/wiki/Baum–Welch_algorithm

    In electrical engineering, statistical computing and bioinformatics, the Baum–Welch algorithm is a special case of the expectationmaximization algorithm used to find the unknown parameters of a hidden Markov model (HMM). It makes use of the forward-backward algorithm to compute the statistics for the expectation step. The Baum–Welch ...

  5. Multiple EM for Motif Elicitation - Wikipedia

    en.wikipedia.org/wiki/Multiple_EM_for_Motif...

    Expectation maximization (EM). EM based heuristic for choosing the EM starting point. Maximum likelihood ratio based (LRT-based) heuristic for determining the best number of model-free parameters. Multi-start for searching over possible motif widths. Greedy search for finding multiple motifs. However, one often doesn't know where the starting ...

  6. MM algorithm - Wikipedia

    en.wikipedia.org/wiki/Mm_algorithm

    The expectationmaximization algorithm can be treated as a special case of the MM algorithm. [1] [2] However, in the EM algorithm conditional expectations are usually involved, while in the MM algorithm convexity and inequalities are the main focus, and it is easier to understand and apply in most cases. [3]

  7. Bayesian network - Wikipedia

    en.wikipedia.org/wiki/Bayesian_network

    Direct maximization of the likelihood (or of the posterior probability) is often complex given unobserved variables. A classical approach to this problem is the expectation-maximization algorithm , which alternates computing expected values of the unobserved variables conditional on observed data, with maximizing the complete likelihood (or ...

  8. k-means clustering - Wikipedia

    en.wikipedia.org/wiki/K-means_clustering

    For expectation maximization and standard k-means algorithms, the Forgy method of initialization is preferable. A comprehensive study by Celebi et al., [ 11 ] however, found that popular initialization methods such as Forgy, Random Partition, and Maximin often perform poorly, whereas Bradley and Fayyad's approach [ 12 ] performs "consistently ...

  9. Dynamic discrete choice - Wikipedia

    en.wikipedia.org/wiki/Dynamic_discrete_choice

    Rust's implementation of the nested fixed point algorithm is highly optimized for this problem, using Newton–Kantorovich iterations to calculate (,) and quasi-Newton methods, such as the Berndt–Hall–Hall–Hausman algorithm, for likelihood maximization.