Search results
Results from the WOW.Com Content Network
The eigenvalues of a matrix can be determined by finding the roots of the characteristic polynomial. This is easy for 2 × 2 {\displaystyle 2\times 2} matrices, but the difficulty increases rapidly with the size of the matrix.
Given an n × n square matrix A of real or complex numbers, an eigenvalue λ and its associated generalized eigenvector v are a pair obeying the relation [1] =,where v is a nonzero n × 1 column vector, I is the n × n identity matrix, k is a positive integer, and both λ and v are allowed to be complex even when A is real.l When k = 1, the vector is called simply an eigenvector, and the pair ...
In numerical linear algebra, the QR algorithm or QR iteration is an eigenvalue algorithm: that is, a procedure to calculate the eigenvalues and eigenvectors of a matrix.The QR algorithm was developed in the late 1950s by John G. F. Francis and by Vera N. Kublanovskaya, working independently.
A generalized eigenvalue problem (second sense) is the problem of finding a (nonzero) vector v that obeys = where A and B are matrices. If v obeys this equation, with some λ , then we call v the generalized eigenvector of A and B (in the second sense), and λ is called the generalized eigenvalue of A and B (in the second sense) which ...
In numerical linear algebra, the Jacobi eigenvalue algorithm is an iterative method for the calculation of the eigenvalues and eigenvectors of a real symmetric matrix ...
In mathematics, power iteration (also known as the power method) is an eigenvalue algorithm: given a diagonalizable matrix, the algorithm will produce a number , which is the greatest (in absolute value) eigenvalue of , and a nonzero vector , which is a corresponding eigenvector of , that is, =.
In numerical linear algebra, the Arnoldi iteration is an eigenvalue algorithm and an important example of an iterative method.Arnoldi finds an approximation to the eigenvalues and eigenvectors of general (possibly non-Hermitian) matrices by constructing an orthonormal basis of the Krylov subspace, which makes it particularly useful when dealing with large sparse matrices.
Furthermore, because the determinant equals the product of the eigenvalues, we have = where the λ i {\displaystyle \lambda _{i}} are eigenvalues of A {\displaystyle A} . We can extend the above properties to a non-square complex matrix A {\displaystyle A} by introducing the definition of QR decomposition for non-square complex matrices and ...