enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Newton's law of universal gravitation - Wikipedia

    en.wikipedia.org/wiki/Newton's_law_of_universal...

    To make this into an equal-sided formula or equation, there needed to be a multiplying factor or constant that would give the correct force of gravity no matter the value of the masses or distance between them (the gravitational constant). Newton would need an accurate measure of this constant to prove his inverse-square law.

  3. Equations for a falling body - Wikipedia

    en.wikipedia.org/wiki/Equations_for_a_falling_body

    A set of equations describing the trajectories of objects subject to a constant gravitational force under normal Earth-bound conditions.Assuming constant acceleration g due to Earth's gravity, Newton's law of universal gravitation simplifies to F = mg, where F is the force exerted on a mass m by the Earth's gravitational field of strength g.

  4. Shallow water equations - Wikipedia

    en.wikipedia.org/wiki/Shallow_water_equations

    There are 2 body forces acting on the channel fluid, namely, gravity and friction: =, +, where f x,g is the body force due to gravity and f x,f is the body force due to friction. f x , g can be calculated using basic physics and trigonometry: [ 27 ] F g = sin ⁡ ( θ ) g M {\displaystyle F_{g}=\sin(\theta )gM} where F g is the force of gravity ...

  5. List of equations in gravitation - Wikipedia

    en.wikipedia.org/wiki/List_of_equations_in...

    A common misconception occurs between centre of mass and centre of gravity.They are defined in similar ways but are not exactly the same quantity. Centre of mass is the mathematical description of placing all the mass in the region considered to one position, centre of gravity is a real physical quantity, the point of a body where the gravitational force acts.

  6. Gravitational constant - Wikipedia

    en.wikipedia.org/wiki/Gravitational_constant

    The Schiehallion experiment, proposed in 1772 and completed in 1776, was the first successful measurement of the mean density of the Earth, and thus indirectly of the gravitational constant. The result reported by Charles Hutton (1778) suggested a density of 4.5 g/cm 3 (⁠4 + 1 / 2 ⁠ times the density of water), about 20% below the modern ...

  7. Specific weight - Wikipedia

    en.wikipedia.org/wiki/Specific_weight

    The specific weight, also known as the unit weight (symbol γ, the Greek letter gamma), is a volume-specific quantity defined as the weight W divided by the volume V of a material: = / Equivalently, it may also be formulated as the product of density, ρ, and gravity acceleration, g: = Its unit of measurement in the International System of Units (SI) is newton per cubic metre (N/m 3), with ...

  8. Stokes' law - Wikipedia

    en.wikipedia.org/wiki/Stokes'_law

    ρ p is the mass density of the sphere [kg/m 3] ρ f is the mass density of the fluid [kg/m 3] g is the gravitational acceleration [m/s 2] Requiring the force balance F d = F e and solving for the velocity v gives the terminal velocity v s.

  9. Drag equation - Wikipedia

    en.wikipedia.org/wiki/Drag_equation

    The drag equation may be derived to within a multiplicative constant by the method of dimensional analysis. If a moving fluid meets an object, it exerts a force on the object. Suppose that the fluid is a liquid, and the variables involved – under some conditions – are the: speed u, fluid density ρ, kinematic viscosity ν of the fluid,