enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Exponential factorial - Wikipedia

    en.wikipedia.org/wiki/Exponential_factorial

    The exponential factorials grow much more quickly than regular factorials or even hyperfactorials. The number of digits in the exponential factorial of 6 is approximately 5 × 10 183 230. The sum of the reciprocals of the exponential factorials from 1 onwards is the following transcendental number:

  3. Factorial - Wikipedia

    en.wikipedia.org/wiki/Factorial

    In mathematical analysis, factorials are used in power series for the exponential function and other functions, and they also have applications in algebra, number theory, probability theory, and computer science. Much of the mathematics of the factorial function was developed beginning in the late 18th and early 19th centuries.

  4. List of mathematical series - Wikipedia

    en.wikipedia.org/wiki/List_of_mathematical_series

    An infinite series of any rational function of can be reduced to a finite series of polygamma functions, by use of partial fraction decomposition, [8] as explained here. This fact can also be applied to finite series of rational functions, allowing the result to be computed in constant time even when the series contains a large number of terms.

  5. List of sums of reciprocals - Wikipedia

    en.wikipedia.org/wiki/List_of_sums_of_reciprocals

    An exponential factorial is an operation recursively defined as =, = . For example, a 4 = 4 3 2 1 {\displaystyle \ a_{4}=4^{3^{2^{1}}}\ } where the exponents are evaluated from the top down. The sum of the reciprocals of the exponential factorials from 1 onward is approximately 1.6111 and is transcendental.

  6. Stirling's approximation - Wikipedia

    en.wikipedia.org/wiki/Stirling's_approximation

    A complex-analysis version of this method [4] is to consider ! as a Taylor coefficient of the exponential function = =!, computed by Cauchy's integral formula as ! = | | = +. This line integral can then be approximated using the saddle-point method with an appropriate choice of contour radius r = r n {\displaystyle r=r_{n}} .

  7. Legendre's formula - Wikipedia

    en.wikipedia.org/wiki/Legendre's_formula

    In mathematics, Legendre's formula gives an expression for the exponent of the largest power of a prime p that divides the factorial n!. It is named after Adrien-Marie Legendre . It is also sometimes known as de Polignac's formula , after Alphonse de Polignac .

  8. Double exponential function - Wikipedia

    en.wikipedia.org/wiki/Double_exponential_function

    Factorials grow faster than exponential functions, but much more slowly than double exponential functions. However, tetration and the Ackermann function grow faster. See Big O notation for a comparison of the rate of growth of various functions. The inverse of the double exponential function is the double logarithm log(log(x)).

  9. List of representations of e - Wikipedia

    en.wikipedia.org/wiki/List_of_representations_of_e

    This last non-simple continued fraction (sequence A110185 in the OEIS), equivalent to = [;,,,,,...], has a quicker convergence rate compared to Euler's continued fraction formula [clarification needed] and is a special case of a general formula for the exponential function: