Search results
Results from the WOW.Com Content Network
The EM algorithm consists of two steps: the E-step and the M-step. Firstly, the model parameters and the () can be randomly initialized. In the E-step, the algorithm tries to guess the value of () based on the parameters, while in the M-step, the algorithm updates the value of the model parameters based on the guess of () of the E-step.
Probabilistic mixture models such as Gaussian mixture models (GMM) are used to resolve point set registration problems in image processing and computer vision fields. For pair-wise point set registration , one point set is regarded as the centroids of mixture models, and the other point set is regarded as data points (observations).
For example, one of the solutions that may be found by EM in a mixture model involves setting one of the components to have zero variance and the mean parameter for the same component to be equal to one of the data points. The convergence of expectation-maximization (EM)-based algorithms typically requires continuity of the likelihood function ...
The point set represents the Gaussian mixture model (GMM) centroids. When the two point sets are optimally aligned, the correspondence is the maximum of the GMM posterior probability for a given data point. To preserve the topological structure of the point sets, the GMM centroids are forced to move coherently as a group.
Model-based clustering [1] bases this on a statistical model for the data, usually a mixture model. This has several advantages, including a principled statistical basis for clustering, and ways to choose the number of clusters, to choose the best clustering model, to assess the uncertainty of the clustering, and to identify outliers that do ...
In econometrics and statistics, the generalized method of moments (GMM) is a generic method for estimating parameters in statistical models.Usually it is applied in the context of semiparametric models, where the parameter of interest is finite-dimensional, whereas the full shape of the data's distribution function may not be known, and therefore maximum likelihood estimation is not applicable.
ATR Using Cepstrum Features and GMM. An example of a detection algorithm is shown in the flowchart. This method uses M blocks of data, extracts the desired features from each (i.e. LPC coefficients, MFCC) then models them using a Gaussian mixture model (GMM). After a model is obtained using the data collected, conditional probability is formed ...
GMM may refer to: Generalized method of moments, an econometric method; GMM Grammy, a Thai entertainment company; Gaussian mixture model, a statistical probabilistic model; Google Map Maker, a public cartography project; GMM, IATA code for Gamboma Airport in the Republic of the Congo