Search results
Results from the WOW.Com Content Network
(0) real beam, (1) shear and moment, (2) conjugate beam, (3) slope and displacement The conjugate-beam methods is an engineering method to derive the slope and displacement of a beam. A conjugate beam is defined as an imaginary beam with the same dimensions (length) as that of the original beam but load at any point on the conjugate beam is ...
Shear and Bending moment diagram for a simply supported beam with a concentrated load at mid-span. Shear force and bending moment diagrams are analytical tools used in conjunction with structural analysis to help perform structural design by determining the value of shear forces and bending moments at a given point of a structural element such as a beam.
In solid mechanics, a bending moment is the reaction induced in a structural element when an external force or moment is applied to the element, causing the element to bend. [ 1 ] [ 2 ] The most common or simplest structural element subjected to bending moments is the beam .
Chapter 9 – Bending of Curved Beams Chapter 10 – Torsion Chapter 11 – Flat Plates Chapter 12 – Columns and Other Compression Members Chapter 13 – Shells of Revolution; Pressure Vessels; Pipes Chapter 14 – Bodies in Contact Undergoing Direct Bearing and Shear Stress Chapter 15 – Elastic Stability
where is the flexural modulus (in Pa), is the second moment of area (in m 4), is the transverse displacement of the beam at x, and () is the bending moment at x. The flexural rigidity (stiffness) of the beam is therefore related to both E {\displaystyle E} , a material property, and I {\displaystyle I} , the physical geometry of the beam.
An influence line for a given function, such as a reaction, axial force, shear force, or bending moment, is a graph that shows the variation of that function at any given point on a structure due to the application of a unit load at any point on the structure. An influence line for a function differs from a shear, axial, or bending moment diagram.
The starting point is the relation from Euler-Bernoulli beam theory = Where is the deflection and is the bending moment. This equation [7] is simpler than the fourth-order beam equation and can be integrated twice to find if the value of as a function of is known.
In the absence of a qualifier, the term bending is ambiguous because bending can occur locally in all objects. Therefore, to make the usage of the term more precise, engineers refer to a specific object such as; the bending of rods, [2] the bending of beams, [1] the bending of plates, [3] the bending of shells [2] and so on.