Ad
related to: wash basin and sink difference calculator with area of radius 1 1/2 m
Search results
Results from the WOW.Com Content Network
A is the cross-sectional area of the flow, P is the wetted perimeter of the cross-section. More intuitively, the hydraulic diameter can be understood as a function of the hydraulic radius R H, which is defined as the cross-sectional area of the channel divided by the wetted perimeter. Here, the wetted perimeter includes all surfaces acted upon ...
Short-radius (or regular) 45° elbow (copper sweat) Long-radius (or sweep) 90° elbow (copper sweat) An elbow is installed between two lengths of pipe (or tubing) to allow a change of direction, usually a 90° or 45° angle; 22.5° elbows are also available. The ends may be machined for butt welding, threaded (usually female), or socketed. When ...
r = drain radius (m) Steady (equilibrium) state condition In steady state , the level of the water table remains constant and the discharge rate (Q) equals the rate of groundwater recharge (R), i.e. the amount of water entering the groundwater through the watertable per unit of time.
From left to right: a field with a source, a field with a sink, a field without either. In the physical sciences, engineering and mathematics, sources and sinks is an analogy used to describe properties of vector fields. It generalizes the idea of fluid sources and sinks (like the faucet and drain of a bathtub) across different scientific ...
Units of n are often omitted, however n is not dimensionless, having dimension of T/L 1/3 and units of s/m 1/3. R h is the hydraulic radius (L; ft, m); S is the stream slope or hydraulic gradient , the linear hydraulic head loss loss (dimension of L/L, units of m/m or ft/ft); it is the same as the channel bed slope when the water depth is constant.
The Nusselt number is the ratio of total heat transfer (convection + conduction) to conductive heat transfer across a boundary. The convection and conduction heat flows are parallel to each other and to the surface normal of the boundary surface, and are all perpendicular to the mean fluid flow in the simple case.
In thermal engineering, the logarithmic mean temperature difference (LMTD) is used to determine the temperature driving force for heat transfer in flow systems, most notably in heat exchangers. The LMTD is a logarithmic average of the temperature difference between the hot and cold feeds at each end of the double pipe exchanger.
Rugged regions or those with high relief will also have a higher drainage density than other drainage basins if the other characteristics of the basin are the same. When determining the total length of streams in a basin, both perennial and ephemeral streams should be considered. [2]
Ad
related to: wash basin and sink difference calculator with area of radius 1 1/2 m