Search results
Results from the WOW.Com Content Network
Protein precipitation is widely used in downstream processing of biological products in order to concentrate proteins and purify them from various contaminants. For example, in the biotechnology industry protein precipitation is used to eliminate contaminants commonly contained in blood. [ 1 ]
The protein of interest then reduces its surface area, which diminishes its contact with the solvent. This is shown by the folding and self-association, which ultimately leads to precipitation. The folding and self-association of the protein pushes out free water, leading to an increase in entropy and making this process energetically favorable ...
Immunoprecipitation of intact protein complexes (i.e. antigen along with any proteins or ligands that are bound to it) is known as co-immunoprecipitation (Co-IP). Co-IP works by selecting an antibody that targets a known protein that is believed to be a member of a larger complex of proteins.
The protein manufacturing cost remains high and there is a growing demand to develop cost efficient and rapid protein purification methods. Understanding the different protein purification methods and optimizing the downstream processing is critical to minimize production costs while maintaining the quality of acceptable standards of homogeneity. [2]
You are free: to share – to copy, distribute and transmit the work; to remix – to adapt the work; Under the following conditions: attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made.
Salting out (also known as salt-induced precipitation, salt fractionation, anti-solvent crystallization, precipitation crystallization, or drowning out) [1] is a purification technique that utilizes the reduced solubility of certain molecules in a solution of very high ionic strength.
Fractions I, II, and III are precipitated out at earlier stages. The conditions of the earlier stages are 8% ethanol, pH 7.2, −3 °C, and 5.1% protein for Fraction I; 25% ethanol, pH of 6.9, −5 °C, and 3% protein. The albumin remains in the supernatant fraction during the solid/liquid separation under these conditions.
The size of the protein-detergent mixed micelles are affected by both additives and detergents which will strongly influence the crystals obtained. In addition to varying the concentration of primary detergents, additives ( lipids and alcohols ) and secondary detergents can be used to modulate the size and shape of the detergent micelles.