Search results
Results from the WOW.Com Content Network
The boundary layer around a human hand, schlieren photograph. The boundary layer is the bright-green border, most visible on the back of the hand (click for high-res image). In physics and fluid mechanics, a boundary layer is the thin layer of fluid in the immediate vicinity of a bounding surface formed by
The boundary layer thickness, , is the distance normal to the wall to a point where the flow velocity has essentially reached the 'asymptotic' velocity, .Prior to the development of the Moment Method, the lack of an obvious method of defining the boundary layer thickness led much of the flow community in the later half of the 1900s to adopt the location , denoted as and given by
The Stanton number arises in the consideration of the geometric similarity of the momentum boundary layer and the thermal boundary layer, where it can be used to express a relationship between the shear force at the wall (due to viscous drag) and the total heat transfer at the wall (due to thermal diffusivity).
In fluid dynamics, the von Kármán constant (or Kármán's constant), named for Theodore von Kármán, is a dimensionless constant involved in the logarithmic law describing the distribution of the longitudinal velocity in the wall-normal direction of a turbulent fluid flow near a boundary with a no-slip condition.
The Reynolds Analogy is popularly known to relate turbulent momentum and heat transfer. [1] That is because in a turbulent flow (in a pipe or in a boundary layer) the transport of momentum and the transport of heat largely depends on the same turbulent eddies: the velocity and the temperature profiles have the same shape.
This is similar to the so-called boundary layer effect encountered in the BEM-based methods. A nonlinear transformation, based on the sinh function, can be employed to remove or damp out the rapid variations of the nearly singular kernels. [17] As a result, the troublesome boundary layer effect in the SBM has been successfully remedied.
A schematic diagram of the Blasius flow profile. The streamwise velocity component () / is shown, as a function of the similarity variable .. Using scaling arguments, Ludwig Prandtl [1] argued that about half of the terms in the Navier-Stokes equations are negligible in boundary layer flows (except in a small region near the leading edge of the plate).
Self-similar solutions appear whenever the problem lacks a characteristic length or time scale (for example, the Blasius boundary layer of an infinite plate, but not of a finite-length plate). These include, for example, the Blasius boundary layer or the Sedov–Taylor shell .