Search results
Results from the WOW.Com Content Network
In mathematics, a relation denotes some kind of relationship between two objects in a set, which may or may not hold. [1] As an example, " is less than " is a relation on the set of natural numbers ; it holds, for instance, between the values 1 and 3 (denoted as 1 < 3 ), and likewise between 3 and 4 (denoted as 3 < 4 ), but not between the ...
In linear algebra, a linear relation, or simply relation, between elements of a vector space or a module is a linear equation that has these elements as a solution.. More precisely, if , …, are elements of a (left) module M over a ring R (the case of a vector space over a field is a special case), a relation between , …, is a sequence (, …,) of elements of R such that
3. Between two groups, may mean that the first one is a proper subgroup of the second one. > (greater-than sign) 1. Strict inequality between two numbers; means and is read as "greater than". 2. Commonly used for denoting any strict order. 3. Between two groups, may mean that the second one is a proper subgroup of the first one. ≤ 1.
An example of an irreflexive relation, which means that it does not relate any element to itself, is the "greater than" relation (>) on the real numbers. Not every relation which is not reflexive is irreflexive; it is possible to define relations where some elements are related to themselves but others are not (that is, neither all nor none are).
In the particular case of groups, congruence relations can be described in elementary terms as follows: If G is a group (with identity element e and operation *) and ~ is a binary relation on G, then ~ is a congruence whenever: Given any element a of G, a ~ a (reflexivity); Given any elements a and b of G, if a ~ b, then b ~ a ;
A relation R is called intransitive if it is not transitive, that is, if xRy and yRz, but not xRz, for some x, y, z. In contrast, a relation R is called antitransitive if xRy and yRz always implies that xRz does not hold. For example, the relation defined by xRy if xy is an even number is intransitive, [13] but not antitransitive. [14]
The terms correspondence, [16] dyadic relation and two-place relation are synonyms for binary relation, though some authors use the term "binary relation" for any subset of a Cartesian product without reference to and , and reserve the term "correspondence" for a binary relation with reference to and .
In mathematics, a binary relation R ⊆ X×Y between two sets X and Y is total (or left total) if the source set X equals the domain {x : there is a y with xRy}. Conversely, R is called right total if Y equals the range {y : there is an x with xRy}. When f: X → Y is a function, the domain of f is all of X, hence f is a total relation.