enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Relation (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Relation_(mathematics)

    In mathematics, a relation denotes some kind of relationship between two objects in a set, which may or may not hold. [1] As an example, " is less than " is a relation on the set of natural numbers ; it holds, for instance, between the values 1 and 3 (denoted as 1 < 3 ), and likewise between 3 and 4 (denoted as 3 < 4 ), but not between the ...

  3. Linear relation - Wikipedia

    en.wikipedia.org/wiki/Linear_relation

    In linear algebra, a linear relation, or simply relation, between elements of a vector space or a module is a linear equation that has these elements as a solution.. More precisely, if , …, are elements of a (left) module M over a ring R (the case of a vector space over a field is a special case), a relation between , …, is a sequence (, …,) of elements of R such that

  4. Glossary of mathematical symbols - Wikipedia

    en.wikipedia.org/wiki/Glossary_of_mathematical...

    3. Between two groups, may mean that the first one is a proper subgroup of the second one. > (greater-than sign) 1. Strict inequality between two numbers; means and is read as "greater than". 2. Commonly used for denoting any strict order. 3. Between two groups, may mean that the second one is a proper subgroup of the first one. ≤ 1.

  5. Reflexive relation - Wikipedia

    en.wikipedia.org/wiki/Reflexive_relation

    An example of an irreflexive relation, which means that it does not relate any element to itself, is the "greater than" relation (>) on the real numbers. Not every relation which is not reflexive is irreflexive; it is possible to define relations where some elements are related to themselves but others are not (that is, neither all nor none are).

  6. Congruence relation - Wikipedia

    en.wikipedia.org/wiki/Congruence_relation

    In the particular case of groups, congruence relations can be described in elementary terms as follows: If G is a group (with identity element e and operation *) and ~ is a binary relation on G, then ~ is a congruence whenever: Given any element a of G, a ~ a (reflexivity); Given any elements a and b of G, if a ~ b, then b ~ a ;

  7. Transitive relation - Wikipedia

    en.wikipedia.org/wiki/Transitive_relation

    A relation R is called intransitive if it is not transitive, that is, if xRy and yRz, but not xRz, for some x, y, z. In contrast, a relation R is called antitransitive if xRy and yRz always implies that xRz does not hold. For example, the relation defined by xRy if xy is an even number is intransitive, [13] but not antitransitive. [14]

  8. Binary relation - Wikipedia

    en.wikipedia.org/wiki/Binary_relation

    The terms correspondence, [16] dyadic relation and two-place relation are synonyms for binary relation, though some authors use the term "binary relation" for any subset of a Cartesian product without reference to and , and reserve the term "correspondence" for a binary relation with reference to and .

  9. Total relation - Wikipedia

    en.wikipedia.org/wiki/Total_relation

    In mathematics, a binary relation R ⊆ X×Y between two sets X and Y is total (or left total) if the source set X equals the domain {x : there is a y with xRy}. Conversely, R is called right total if Y equals the range {y : there is an x with xRy}. When f: X → Y is a function, the domain of f is all of X, hence f is a total relation.