Search results
Results from the WOW.Com Content Network
A spinor visualized as a vector pointing along the Möbius band, exhibiting a sign inversion when the circle (the "physical system") is continuously rotated through a full turn of 360°. [a] In geometry and physics, spinors (pronounced "spinner" IPA / s p ɪ n ər /) are elements of a complex vector space that can be associated with Euclidean ...
The study of the behavior of such "spin models" is a thriving area of research in condensed matter physics. For instance, the Ising model describes spins (dipoles) that have only two possible states, up and down, whereas in the Heisenberg model the spin vector is allowed to point in any direction.
The spin magnetic moment of the electron is =, where is the spin (or intrinsic angular-momentum) vector, is the Bohr magneton, and = is the electron-spin g-factor. Here μ {\displaystyle {\boldsymbol {\mu }}} is a negative constant multiplied by the spin , so the spin magnetic moment is antiparallel to the spin.
A spin model is a mathematical model used in physics primarily to explain magnetism. Spin models may either be classical or quantum mechanical in nature. Spin models have been studied in quantum field theory as examples of integrable models. Spin models are also used in quantum information theory and computability theory in theoretical computer ...
In quantum field theory, the Dirac spinor is the spinor that describes all known fundamental particles that are fermions, with the possible exception of neutrinos.It appears in the plane-wave solution to the Dirac equation, and is a certain combination of two Weyl spinors, specifically, a bispinor that transforms "spinorially" under the action of the Lorentz group.
The existence of the thermodynamic limit for the free energy and spin correlations were proved by Ginibre, extending to this case the Griffiths inequality. [3]Using the Griffiths inequality in the formulation of Ginibre, Aizenman and Simon [4] proved that the two point spin correlation of the ferromagnetics XY model in dimension D, coupling J > 0 and inverse temperature β is dominated by (i.e ...
whose solution has only two possible z-components for the electron. In the electron, the two different spin orientations are sometimes called "spin-up" or "spin-down". The spin property of an electron would give rise to magnetic moment, which was a requisite for the fourth quantum number. The magnetic moment vector of an electron spin is given by:
This is the continuous spin representation. In d + 1 dimensions, the little group is the double cover of SE( d − 1 ) (the case where d ≤ 2 is more complicated because of anyons , etc.). As before, there are unitary representations which don't transform under the SE( d − 1 ) "translations" (the "standard" representations) and "continuous ...