enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Second-order cone programming - Wikipedia

    en.wikipedia.org/wiki/Second-order_cone_programming

    The "second-order cone" in SOCP arises from the constraints, which are equivalent to requiring the affine function (+, +) to lie in the second-order cone in +. [ 1 ] SOCPs can be solved by interior point methods [ 2 ] and in general, can be solved more efficiently than semidefinite programming (SDP) problems. [ 3 ]

  3. Quadratically constrained quadratic program - Wikipedia

    en.wikipedia.org/wiki/Quadratically_constrained...

    There are two main relaxations of QCQP: using semidefinite programming (SDP), and using the reformulation-linearization technique (RLT). For some classes of QCQP problems (precisely, QCQPs with zero diagonal elements in the data matrices), second-order cone programming (SOCP) and linear programming (LP) relaxations providing the same objective value as the SDP relaxation are available.

  4. Curve fitting - Wikipedia

    en.wikipedia.org/wiki/Curve_fitting

    Fitting of a noisy curve by an asymmetrical peak model, with an iterative process (Gauss–Newton algorithm with variable damping factor α).Curve fitting [1] [2] is the process of constructing a curve, or mathematical function, that has the best fit to a series of data points, [3] possibly subject to constraints.

  5. Convex optimization - Wikipedia

    en.wikipedia.org/wiki/Convex_optimization

    In LP, the objective and constraint functions are all linear. Quadratic programming are the next-simplest. In QP, the constraints are all linear, but the objective may be a convex quadratic function. Second order cone programming are more general. Semidefinite programming are more general. Conic optimization are even more general - see figure ...

  6. Constrained optimization - Wikipedia

    en.wikipedia.org/wiki/Constrained_optimization

    The sum of these values is an upper bound because the soft constraints cannot assume a higher value. It is exact because the maximal values of soft constraints may derive from different evaluations: a soft constraint may be maximal for x = a {\displaystyle x=a} while another constraint is maximal for x = b {\displaystyle x=b} .

  7. Nonlinear programming - Wikipedia

    en.wikipedia.org/wiki/Nonlinear_programming

    First-order routines - use also the values of the gradients of these functions; Second-order routines - use also the values of the Hessians of these functions. Third-order routines (and higher) are theoretically possible, but not used in practice, due to the higher computational load and little theoretical benefit.

  8. Finite difference coefficient - Wikipedia

    en.wikipedia.org/wiki/Finite_difference_coefficient

    where the only non-zero value on the right hand side is in the (+)-th row. An open source implementation for calculating finite difference coefficients of arbitrary derivates and accuracy order in one dimension is available.

  9. Karush–Kuhn–Tucker conditions - Wikipedia

    en.wikipedia.org/wiki/Karush–Kuhn–Tucker...

    Consider the following nonlinear optimization problem in standard form: . minimize () subject to (),() =where is the optimization variable chosen from a convex subset of , is the objective or utility function, (=, …,) are the inequality constraint functions and (=, …,) are the equality constraint functions.