Search results
Results from the WOW.Com Content Network
An induced path of length four in a cube.Finding the longest induced path in a hypercube is known as the snake-in-the-box problem.. In the mathematical area of graph theory, an induced path in an undirected graph G is a path that is an induced subgraph of G.
In graph theory terminology, this is called finding the longest possible induced path in a hypercube; it can be viewed as a special case of the induced subgraph isomorphism problem. There is a similar problem of finding long induced cycles in hypercubes, called the coil-in-the-box problem.
In graph theory and theoretical computer science, the longest path problem is the problem of finding a simple path of maximum length in a given graph.A path is called simple if it does not have any repeated vertices; the length of a path may either be measured by its number of edges, or (in weighted graphs) by the sum of the weights of its edges.
A three-dimensional hypercube graph showing a Hamiltonian path in red, and a longest induced path in bold black. In graph theory, a path in a graph is a finite or infinite sequence of edges which joins a sequence of vertices which, by most definitions, are all distinct (and since the vertices are distinct, so are the edges).
It has gained a measure of fame as it is the longest place name found in any English-speaking country, and possibly the longest place name in the world, according to World Atlas. [2] The name of the hill (with 85 characters) has been listed in the Guinness World Records as the longest place name. Other versions of the name, including longer ...
The shortest path between any two vertices in an unweighted graph is always an induced path, because any additional edges between pairs of vertices that could cause it to be not induced would also cause it to be not shortest. Conversely, in distance-hereditary graphs, every induced path is a shortest path. [2]
A k-path is a k-tree with at most two k-leaves, and a k-caterpillar is a k-tree that can be partitioned into a k-path and a set of k-leaves each adjacent to a separator k-clique of the k-path. In particular the maximal graphs of pathwidth one are exactly the caterpillar trees .
In two dimensions, the chordal metric on the sphere is not intrinsic, and the induced intrinsic metric is given by the great-circle distance. Every connected Riemannian manifold can be turned into a path metric space by defining the distance of two points as the infimum of the lengths of continuously differentiable curves connecting the two ...