enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Particular values of the Riemann zeta function - Wikipedia

    en.wikipedia.org/wiki/Particular_values_of_the...

    The zeta function values listed below include function values at the negative even numbers (s = −2, −4, etc.), for which ζ(s) = 0 and which make up the so-called trivial zeros. The Riemann zeta function article includes a colour plot illustrating how the function varies over a continuous rectangular region of the complex plane.

  3. Riemann zeta function - Wikipedia

    en.wikipedia.org/wiki/Riemann_zeta_function

    This image shows a plot of the Riemann zeta function along the critical line for real values of t running from 0 to 34. The first five zeros in the critical strip are clearly visible as the place where the spirals pass through the origin. The real part (red) and imaginary part (blue) of the Riemann zeta function along the critical line Re(s) = 1/2

  4. Portal:Mathematics/Selected picture - Wikipedia

    en.wikipedia.org/wiki/Portal:Mathematics/...

    Riemann's zeta function grew out of Leonhard Euler's study of real-valued infinite series in the early 18th century. In a famous 1859 paper called " On the Number of Primes Less Than a Given Magnitude ", Bernhard Riemann extended Euler's results to the complex plane and established a relation between the zeros of his zeta function and the ...

  5. Z function - Wikipedia

    en.wikipedia.org/wiki/Z_function

    Z function in the complex plane, plotted with a variant of domain coloring. Z function in the complex plane, zoomed out. In mathematics, the Z function is a function used for studying the Riemann zeta function along the critical line where the argument is one-half.

  6. Zeros and poles - Wikipedia

    en.wikipedia.org/wiki/Zeros_and_poles

    A meromorphic function may have infinitely many zeros and poles. This is the case for the gamma function (see the image in the infobox), which is meromorphic in the whole complex plane, and has a simple pole at every non-positive integer. The Riemann zeta function is also meromorphic in the whole complex plane, with a single pole of order 1 at ...

  7. List of zeta functions - Wikipedia

    en.wikipedia.org/wiki/List_of_zeta_functions

    Zeta function of an incidence algebra, a function that maps every interval of a poset to the constant value 1. Despite not resembling a holomorphic function, the special case for the poset of integer divisibility is related as a formal Dirichlet series to the Riemann zeta function.

  8. Zeta distribution - Wikipedia

    en.wikipedia.org/wiki/Zeta_distribution

    where ζ(s) is the Riemann zeta function (which is undefined for s = 1). The multiplicities of distinct prime factors of X are independent random variables. The Riemann zeta function being the sum of all terms for positive integer k, it appears thus as the normalization of the Zipf distribution. The terms "Zipf distribution" and the "zeta ...

  9. Analytic number theory - Wikipedia

    en.wikipedia.org/wiki/Analytic_number_theory

    Riemann zeta function ζ(s) in the complex plane. The color of a point s encodes the value of ζ(s): colors close to black denote values close to zero, while hue encodes the value's argument. In mathematics, analytic number theory is a branch of number theory that uses methods from mathematical analysis to solve problems about the integers. [1]