Search results
Results from the WOW.Com Content Network
In mathematics, the method of clearing denominators, also called clearing fractions, is a technique for simplifying an equation equating two expressions that each are a sum of rational expressions – which includes simple fractions.
Theorem — The number of strictly positive roots (counting multiplicity) of is equal to the number of sign changes in the coefficients of , minus a nonnegative even number. If b 0 > 0 {\displaystyle b_{0}>0} , then we can divide the polynomial by x b 0 {\displaystyle x^{b_{0}}} , which would not change its number of strictly positive roots.
Arthur Eddington argued that the fine-structure constant was a unit fraction. He initially thought it to be 1/136 and later changed his theory to 1/137. This contention has been falsified, given that current estimates of the fine structure constant are (to 6 significant digits) 1/137.036. [30]
In mathematics, the method of equating the coefficients is a way of solving a functional equation of two expressions such as polynomials for a number of unknown parameters. It relies on the fact that two expressions are identical precisely when corresponding coefficients are equal for each different type of term.
In mathematics, the infinite series 1 / 2 + 1 / 4 + 1 / 8 + 1 / 16 + ··· is an elementary example of a geometric series that converges absolutely. The sum of the series is 1.
The equals sign, used to represent equality symbolically in an equation. In mathematics, equality is a relationship between two quantities or expressions, stating that they have the same value, or represent the same mathematical object. [1] [2] Equality between A and B is written A = B, and pronounced "A equals B".
Geometric intuition for the integral of 1/x. The three integrals from 1 to 2, from 2 to 4, and from 4 to 8 are all equal. Each region is the previous region halved vertically and doubled horizontally. Extending this, the integral from 1 to 2 k is k times the integral from 1 to 2, just as ln 2 k = k ln 2.
Dividing throughout by 64 ("8" for and ) gave the triple (24, 5/2, 1), which when composed with itself gave the desired integer solution (1151, 120, 1). Brahmagupta solved many Pell's equations with this method, proving that it gives solutions starting from an integer solution of x 2 − N y 2 = k {\displaystyle x^{2}-Ny^{2}=k} for k = ±1, ±2 ...