enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Linear multistep method - Wikipedia

    en.wikipedia.org/wiki/Linear_multistep_method

    The s-step Adams–Bashforth method has order s, while the s-step Adams–Moulton method has order + (Hairer, Nørsett & Wanner 1993, §III.2). These conditions are often formulated using the characteristic polynomials ρ ( z ) = z s + ∑ k = 0 s − 1 a k z k and σ ( z ) = ∑ k = 0 s b k z k . {\displaystyle \rho (z)=z^{s}+\sum _{k=0}^{s-1 ...

  3. Numerical methods for ordinary differential equations - Wikipedia

    en.wikipedia.org/wiki/Numerical_methods_for...

    1768 - Leonhard Euler publishes his method. 1824 - Augustin Louis Cauchy proves convergence of the Euler method. In this proof, Cauchy uses the implicit Euler method. 1855 - First mention of the multistep methods of John Couch Adams in a letter written by Francis Bashforth. 1895 - Carl Runge publishes the first Runge–Kutta method.

  4. Adams method - Wikipedia

    en.wikipedia.org/wiki/Adams_method

    Adams method may refer to: A method for the numerical solution of ordinary differential equations, also known as the linear multistep method A method for apportionment of seats among states in the parliament, a kind of a highest-averages method

  5. Stiff equation - Wikipedia

    en.wikipedia.org/wiki/Stiff_equation

    The pink region is the stability region for the second-order Adams–Bashforth method. Let us determine the region of absolute stability for the two-step Adams–Bashforth method y n + 1 = y n + h ( 3 2 f ( t n , y n ) − 1 2 f ( t n − 1 , y n − 1 ) ) . {\displaystyle y_{n+1}=y_{n}+h\left({\tfrac {3}{2}}f(t_{n},y_{n})-{\tfrac {1}{2}}f(t_{n ...

  6. Adams-Bashforth method - Wikipedia

    en.wikipedia.org/?title=Adams-Bashforth_method&...

    Pages for logged out editors learn more. Contributions; Talk; Adams-Bashforth method

  7. Predictor–corrector method - Wikipedia

    en.wikipedia.org/wiki/Predictor–corrector_method

    A simple predictor–corrector method (known as Heun's method) can be constructed from the Euler method (an explicit method) and the trapezoidal rule (an implicit method). Consider the differential equation ′ = (,), =, and denote the step size by .

  8. List of Runge–Kutta methods - Wikipedia

    en.wikipedia.org/wiki/List_of_Runge–Kutta_methods

    Diagonally Implicit Runge–Kutta (DIRK) formulae have been widely used for the numerical solution of stiff initial value problems; [6] the advantage of this approach is that here the solution may be found sequentially as opposed to simultaneously.

  9. Scoring algorithm - Wikipedia

    en.wikipedia.org/wiki/Scoring_algorithm

    Scoring algorithm, also known as Fisher's scoring, [1] is a form of Newton's method used in statistics to solve maximum likelihood equations numerically, named after Ronald Fisher. Sketch of derivation