Search results
Results from the WOW.Com Content Network
Fig. 1: AVL tree with balance factors (green) In computer science, an AVL tree (named after inventors Adelson-Velsky and Landis) is a self-balancing binary search tree. In an AVL tree, the heights of the two child subtrees of any node differ by at most one; if at any time they differ by more than one, rebalancing is done to restore this property.
Weak AVL rule: all rank differences are 1 or 2, and all leaf nodes have rank 0. Note that weak AVL tree generalizes the AVL tree by allowing for 2,2 type node. A simple proof shows that a weak AVL tree can be colored in a way that represents a red-black tree. So in a sense, weak AVL tree combines the properties of AVL tree and red-black tree.
The relatively new System.Collections.Immutable package, available in .NET Framework versions 4.5 and above, and in all versions of .NET Core, also includes the System.Collections.Immutable.Dictionary<TKey, TValue> type, which is implemented using an AVL tree. The methods that would normally mutate the object in-place instead return a new ...
Insertion into an AVL tree may be carried out by inserting the given value into the tree as if it were an unbalanced binary search tree, and then retracing one's steps toward the root, rotating about any nodes which have become unbalanced during the insertion (see tree rotation). Since at most 1.5 times lg n nodes are retraced on the journey ...
Join follows the right spine of t 1 until a node c which is balanced with t 2. At this point a new node with left child c, root k and right child t 2 is created to replace c. The new node may invalidate the balancing invariant. This can be fixed with rotations. The following is the join algorithms on different balancing schemes. The join ...
[10] [11] Join: The function Join is on two weight-balanced trees t 1 and t 2 and a key k and will return a tree containing all elements in t 1, t 2 as well as k. It requires k to be greater than all keys in t 1 and smaller than all keys in t 2. If the two trees have the balanced weight, Join simply create a new node with left subtree t 1, root ...
For example, leaf nodes by definition have no descendants, so given only a pointer to a leaf node no other node can be reached. A threaded tree adds extra information in some or all nodes, so that for any given single node the "next" node can be found quickly, allowing tree traversal without recursion and the extra storage (proportional to the ...
Node 1 strictly dominates 2, 3, and 4 and the immediate predecessors of node 4 are nodes 2 and 3. Dominance frontiers define the points at which Φ functions are needed. In the above example, when control is passed to node 4, the definition of result used depends on whether control was passed from node 2 or 3.