Search results
Results from the WOW.Com Content Network
First-order means that only the first derivative of y appears in the equation, and higher derivatives are absent. Without loss of generality to higher-order systems, we restrict ourselves to first-order differential equations, because a higher-order ODE can be converted into a larger system of first-order equations by introducing extra variables.
The highest order of derivation that appears in a (linear) differential equation is the order of the equation. The term b(x), which does not depend on the unknown function and its derivatives, is sometimes called the constant term of the equation (by analogy with algebraic equations), even when this term is a non-constant function.
A singular solution is a solution that cannot be obtained by assigning definite values to the arbitrary constants in the general solution. [23] In the context of linear ODE, the terminology particular solution can also refer to any solution of the ODE (not necessarily satisfying the initial conditions), which is then added to the homogeneous ...
Let ˙ = be a linear first order differential equation, where () is a column vector of length and () an periodic matrix with period (that is (+) = for all real values of ). Let ϕ ( t ) {\displaystyle \phi \,(t)} be a fundamental matrix solution of this differential equation.
A differential system is a means of studying a system of partial differential equations using geometric ideas such as differential forms and vector fields. For example, the compatibility conditions of an overdetermined system of differential equations can be succinctly stated in terms of differential forms (i.e., for a form to be exact, it ...
In mathematics (including combinatorics, linear algebra, and dynamical systems), a linear recurrence with constant coefficients [1]: ch. 17 [2]: ch. 10 (also known as a linear recurrence relation or linear difference equation) sets equal to 0 a polynomial that is linear in the various iterates of a variable—that is, in the values of the elements of a sequence.
Now we shall check when these solutions are singular solutions. If two solutions intersect each other, that is, they both go through the same point (x,y), then there is a failure of uniqueness for a first-order ordinary differential equation. Thus, there will be a failure of uniqueness if a solution of the first form intersects the second solution.
Solutions to a slope field are functions drawn as solid curves. A slope field shows the slope of a differential equation at certain vertical and horizontal intervals on the x-y plane, and can be used to determine the approximate tangent slope at a point on a curve, where the curve is some solution to the differential equation.