Search results
Results from the WOW.Com Content Network
The Adams–Moulton methods are solely due to John Couch Adams, like the Adams–Bashforth methods. The name of Forest Ray Moulton became associated with these methods because he realized that they could be used in tandem with the Adams–Bashforth methods as a predictor-corrector pair (Moulton 1926); Milne (1926) had the same idea.
Adams method may refer to: A method for the numerical solution of ordinary differential equations, also known as the linear multistep method A method for apportionment of seats among states in the parliament, a kind of a highest-averages method
move to sidebar hide. From Wikipedia, the free encyclopedia
Copeland's method (voting systems) Crank–Nicolson method (numerical analysis) D'Hondt method (voting systems) D21 – Janeček method (voting system) Discrete element method (numerical analysis) Domain decomposition method (numerical analysis) Epidemiological methods; Euler's forward method; Explicit and implicit methods (numerical analysis)
Bashforth, Francis (1890), Revised account of the experiments made with the Bashforth Chronograph, to find the resistance of the air to the motion of projectiles, with the application of the results to the calculation of trajectories according to J. Bernoulli's method, Cambridge University Press; Bashforth, Francis (1895), Supplement to a ...
A simple predictor–corrector method (known as Heun's method) can be constructed from the Euler method (an explicit method) and the trapezoidal rule (an implicit method). Consider the differential equation ′ = (,), =, and denote the step size by .
Explicit examples from the linear multistep family include the Adams–Bashforth methods, and any Runge–Kutta method with a lower diagonal Butcher tableau is explicit. A loose rule of thumb dictates that stiff differential equations require the use of implicit schemes, whereas non-stiff problems can be solved more efficiently with explicit ...
The two names for these methods—highest averages and divisors—reflect two different ways of thinking about them, and their two independent inventions. However, both procedures are equivalent and give the same answer. [1] Divisor methods are based on rounding rules, defined using a signpost sequence post(k), where k ≤ post(k) ≤ k+1.