Search results
Results from the WOW.Com Content Network
Its symbol is written in several forms as m/s 2, m·s −2 or ms −2, , or less commonly, as (m/s)/s. [ 1 ] As acceleration, the unit is interpreted physically as change in velocity or speed per time interval, i.e. metre per second per second and is treated as a vector quantity.
Simplified model for powering a load with resistance R L by a source with voltage V S and resistance R S.. The theorem was originally misunderstood (notably by Joule [4]) to imply that a system consisting of an electric motor driven by a battery could not be more than 50% efficient, since the power dissipated as heat in the battery would always be equal to the power delivered to the motor when ...
A person pedalling with 100 W power can achieve 5.5 m/s on a roadster, 7.5 m/s on a racing bicycle, 10 m/s with a faired HPV and 14 m/s with an ultimate HPV. [ 9 ] In competitive cycling a sustainable high speed is augmented by the use of light materials, low-resistance tires, aerodynamic design, and the aerodynamic effects of the peloton .
astro: power per square meter potentially received by Earth at the peak of the Sun's red giant phase 2.0 × 10 6 W tech: peak power output of GE's standard wind turbine 2.4 × 10 6 W tech: peak power output of a Princess Coronation class steam locomotive (approx 3.3K EDHP on test) (1937) 2.5 × 10 6 W biomed: peak power output of a blue whale ...
The benz, named in honour of Karl Benz, has been proposed as a name for one metre per second. [10] Although it has seen some support as a practical unit, [11] primarily from German sources, [10] it was rejected as the SI unit of velocity [12] and has not seen widespread use or acceptance.
By assuming a form of Coulomb's law in which the Coulomb constant k e is taken as unity, Maxwell then determined that the dimensions of an electrostatic unit of charge were Q = T −1 L 3/2 M 1/2, [15] which, after substituting his M = T −2 L 3 equation for mass, results in charge having the same dimensions as mass, viz. Q = T −2 L 3.
The watt (symbol: W) is the unit of power or radiant flux in the International System of Units (SI), equal to 1 joule per second or 1 kg⋅m 2 ⋅s −3. [1] [2] [3] It is used to quantify the rate of energy transfer.
DIN 66036 defines one metric horsepower (Pferdestärke, or PS) as the power to raise a mass of 75 kilograms against the Earth's gravitational force over a distance of one metre in one second: [17] 75 kg × 9.80665 m/s 2 × 1 m / 1 s = 75 kgf⋅m/s = 1 PS. This is equivalent to 735.49875 W, or 98.6% of an imperial horsepower.