Search results
Results from the WOW.Com Content Network
Continental-continental divergent/constructive boundary Oceanic divergent boundary: mid-ocean ridge (cross-section/cut-away view). In plate tectonics, a divergent boundary or divergent plate boundary (also known as a constructive boundary or an extensional boundary) is a linear feature that exists between two tectonic plates that are moving away from each other.
This feature is where seafloor spreading takes place along a divergent plate boundary. The rate of seafloor spreading determines the morphology of the crest of the mid-ocean ridge and its width in an ocean basin. The production of new seafloor and oceanic lithosphere results from mantle upwelling in response to plate separation.
The Mid-Atlantic Ridge is a mid-ocean ridge (a divergent or constructive plate boundary) located along the floor of the Atlantic Ocean, and part of the longest mountain range in the world. In the North Atlantic, the ridge separates the North American from the Eurasian plate and the African plate, north and south of the Azores triple junction.
Slab pull is a geophysical mechanism whereby the cooling and subsequent densifying of a subducting tectonic plate produces a downward force along the rest of the plate. In 1975 Forsyth and Uyeda used the inverse theory method to show that, of the many forces likely to be driving plate motion, slab pull was the strongest. [1]
The term had traditionally been used for the intersection of three divergent boundaries or spreading ridges. These three divergent boundaries ideally meet at near 120° angles. In plate tectonics theory during the breakup of a continent, three divergent boundaries form, radiating out from a central point (the triple junction).
Diagram of a mid-ocean ridge showing ridge push near the mid-ocean ridge and the lack of ridge push after 90 Ma. Ridge push is the result of gravitational forces acting on the young, raised oceanic lithosphere around mid-ocean ridges, causing it to slide down the similarly raised but weaker asthenosphere and push on lithospheric material farther from the ridges.
The south-eastern side is a divergent boundary with the Nazca plate forming the East Pacific Rise. [citation needed] The southern side is a divergent boundary with the Antarctic plate forming the Pacific–Antarctic Ridge. [citation needed] The western side is bounded by the Okhotsk microplate at the Kuril–Kamchatka Trench and the Japan Trench.
Geologic tension is also found in the tectonic regions of divergent boundaries. Here, a magma chamber forms underneath oceanic crust and causes sea-floor spreading in the creation of new oceanic crust. [3] Some of the force that pushes the two plates apart is due to ridge push force of the magma chamber. [4]