enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Fluid conductance - Wikipedia

    en.wikipedia.org/wiki/Fluid_conductance

    Fluid conductance is a measure of how effectively fluids are transported through a medium or a region. The concept is particularly useful in cases in which the amount of fluid transported is linearly related to whatever is driving the transport.

  3. List of equations in fluid mechanics - Wikipedia

    en.wikipedia.org/wiki/List_of_equations_in_fluid...

    This article summarizes equations in the theory of fluid mechanics. Definitions. Flux F through a surface, dS is the differential vector area element, ...

  4. Hydraulic conductivity - Wikipedia

    en.wikipedia.org/wiki/Hydraulic_conductivity

    In science and engineering, hydraulic conductivity (K, in SI units of meters per second), is a property of porous materials, soils and rocks, that describes the ease with which a fluid (usually water) can move through the pore space, or fracture network. [1]

  5. Flow coefficient - Wikipedia

    en.wikipedia.org/wiki/Flow_coefficient

    SG is the specific gravity of the fluid (for water = 1), ΔP is the pressure drop across the valve (expressed in psi). In more practical terms, the flow coefficient C v is the volume (in US gallons) of water at 60 °F (16 °C) that will flow per minute through a valve with a pressure drop of 1 psi (6.9 kPa) across the valve.

  6. Darcy's law - Wikipedia

    en.wikipedia.org/wiki/Darcy's_law

    Darcy's law is an equation that describes the flow of a fluid through a porous medium and through a Hele-Shaw cell.The law was formulated by Henry Darcy based on results of experiments [1] on the flow of water through beds of sand, forming the basis of hydrogeology, a branch of earth sciences.

  7. Hagen–Poiseuille equation - Wikipedia

    en.wikipedia.org/wiki/Hagen–Poiseuille_equation

    In non ideal fluid dynamics, the Hagen–Poiseuille equation, also known as the Hagen–Poiseuille law, Poiseuille law or Poiseuille equation, is a physical law that gives the pressure drop in an incompressible and Newtonian fluid in laminar flow flowing through a long cylindrical pipe of constant cross section.

  8. Navier–Stokes equations - Wikipedia

    en.wikipedia.org/wiki/Navier–Stokes_equations

    The Navier–Stokes equations assume that the fluid being studied is a continuum (it is infinitely divisible and not composed of particles such as atoms or molecules), and is not moving at relativistic velocities. At very small scales or under extreme conditions, real fluids made out of discrete molecules will produce results different from the ...

  9. Thermal conduction - Wikipedia

    en.wikipedia.org/wiki/Thermal_conduction

    The previous conductance equations, written in terms of extensive properties, can be reformulated in terms of intensive properties. Ideally, the formulae for conductance should produce a quantity with dimensions independent of distance, like Ohm's law for electrical resistance, R = V / I {\displaystyle R=V/I\,\!} , and conductance, G = I / V ...