Search results
Results from the WOW.Com Content Network
The mean and the standard deviation of a set of data are descriptive statistics usually reported together. In a certain sense, the standard deviation is a "natural" measure of statistical dispersion if the center of the data is measured about the mean. This is because the standard deviation from the mean is smaller than from any other point.
Bias in standard deviation for autocorrelated data. The figure shows the ratio of the estimated standard deviation to its known value (which can be calculated analytically for this digital filter), for several settings of α as a function of sample size n. Changing α alters the variance reduction ratio of the filter, which is known to be
Standard deviation is a widely used measure of the spread or dispersion of a dataset. It quantifies the average amount of variation or deviation of individual data points from the mean of the dataset. It uses squared deviations, and has desirable properties. Standard deviation is sensitive to extreme values, making it not robust. [7]
In many practical applications, ... whereas the standard deviation of the sample is the degree to which individuals within the sample differ from the sample mean. [9] ...
An alternative parameterization of the logistic distribution can be derived by expressing the scale parameter, , in terms of the standard deviation, , using the substitution =, where = / = …. The alternative forms of the above functions are reasonably straightforward.
Robust measures of scale can be used as estimators of properties of the population, either for parameter estimation or as estimators of their own expected value.. For example, robust estimators of scale are used to estimate the population standard deviation, generally by multiplying by a scale factor to make it an unbiased consistent estimator; see scale parameter: estimation.
The use of this number in applied statistics can be traced to the influence of Ronald Fisher's classic textbook, Statistical Methods for Research Workers, first published in 1925: "The value for which P = .05, or 1 in 20, is 1.96 or nearly 2; it is convenient to take this point as a limit in judging whether a deviation is to be considered ...
The bootstrap sample is taken from the original by using sampling with replacement (e.g. we might 'resample' 5 times from [1,2,3,4,5] and get [2,5,4,4,1]), so, assuming N is sufficiently large, for all practical purposes there is virtually zero probability that it will be identical to the original "real" sample. This process is repeated a large ...