enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Ultimate tensile strength - Wikipedia

    en.wikipedia.org/wiki/Ultimate_tensile_strength

    The ultimate tensile strength of a material is an intensive property; therefore its value does not depend on the size of the test specimen.However, depending on the material, it may be dependent on other factors, such as the preparation of the specimen, the presence or otherwise of surface defects, and the temperature of the test environment and material.

  3. Strength of materials - Wikipedia

    en.wikipedia.org/wiki/Strength_of_materials

    The ultimate strength is the maximum stress that a material can withstand before it breaks or weakens. [12] For example, the ultimate tensile strength (UTS) of AISI 1018 Steel is 440 MPa. In Imperial units, the unit of stress is given as lbf/in 2 or pounds-force per square inch. This unit is often abbreviated as psi.

  4. Tension (physics) - Wikipedia

    en.wikipedia.org/wiki/Tension_(physics)

    Nine men pull on a rope. The rope in the photo extends into a drawn illustration showing adjacent segments of the rope. One segment is duplicated in a free body diagram showing a pair of action-reaction forces of magnitude T pulling the segment in opposite directions, where T is transmitted axially and is called the tension force.

  5. Stress (mechanics) - Wikipedia

    en.wikipedia.org/wiki/Stress_(mechanics)

    Stress analysis is a branch of applied physics that covers the determination of the internal distribution of internal forces in solid objects. It is an essential tool in engineering for the study and design of structures such as tunnels, dams, mechanical parts, and structural frames, under prescribed or expected loads.

  6. Shear force - Wikipedia

    en.wikipedia.org/wiki/Shear_force

    EN8 bright has a tensile strength of 800 MPa and mild steel, for comparison, has a tensile strength of 400 MPa. To calculate the force to shear a 25 mm diameter bar of EN8 bright steel; area of the bar in mm 2 = (12.5 2)(π) ≈ 490.8 mm 2 0.8 kN/mm 2 × 490.8 mm 2 = 392.64 kN ≈ 40 tonne-force

  7. Stress–strain curve - Wikipedia

    en.wikipedia.org/wiki/Stress–strain_curve

    This region starts as the stress goes beyond the yielding point, reaching a maximum at the ultimate strength point, which is the maximal stress that can be sustained and is called the ultimate tensile strength (UTS). In this region, the stress mainly increases as the material elongates, except that for some materials such as steel, there is a ...

  8. Pascal (unit) - Wikipedia

    en.wikipedia.org/wiki/Pascal_(unit)

    It is also used to quantify internal pressure, stress, Young's modulus, and ultimate tensile strength. The unit, named after Blaise Pascal, is an SI coherent derived unit defined as one newton per square metre (N/m 2). [1] It is also equivalent to 10 barye (10 Ba) in the CGS system.

  9. Necking (engineering) - Wikipedia

    en.wikipedia.org/wiki/Necking_(engineering)

    It also corresponds to the “strength” (ultimate tensile stress), at least for metals that do neck (which covers the majority of “engineering” metals). On the other hand, the peak in a nominal stress-strain curve is commonly a fairly flat plateau, rather than a sharp maximum, so accurate assessment of the strain at the onset of necking ...