Search results
Results from the WOW.Com Content Network
The teaching method of POGIL is supported by the POGIL Project, [3] a non-profit 501(c)(3) organization based in Lancaster, Pennsylvania. The project trains faculty to implement POGIL in their classrooms and creates new POGIL materials through opportunities including workshops, on-site visits, and consultancies. The project also hosts an annual ...
Light-dependent reactions of photosynthesis at the thylakoid membrane. Photosystems are functional and structural units of protein complexes involved in photosynthesis. Together they carry out the primary photochemistry of photosynthesis: the absorption of light and the transfer of energy and electrons.
In general outline, photosynthesis is the opposite of cellular respiration: while photosynthesis is a process of reduction of carbon dioxide to carbohydrates, cellular respiration is the oxidation of carbohydrates or other nutrients to carbon dioxide. Nutrients used in cellular respiration include carbohydrates, amino acids and fatty acids.
Photosystem II (or water-plastoquinone oxidoreductase) is the first protein complex in the energy-dependent reactions of oxygenic photosynthesis. It is located in the thylakoid membrane of plants , algae , and cyanobacteria .
A simplified reaction mechanism for N-acetylglutamate synthase (NAGS). Two mechanisms for N-acetyltransferase function have been proposed: a two-step, ping-pong mechanism involving transfer of the relevant acetyl group to an activated cysteine residue [10] and a one-step mechanism through direct attack of the amino nitrogen on the carbonyl group. [11]
The following is a breakdown of the energetics of the photosynthesis process from Photosynthesis by Hall and Rao: [6]. Starting with the solar spectrum falling on a leaf, 47% lost due to photons outside the 400–700 nm active range (chlorophyll uses photons between 400 and 700 nm, extracting the energy of one 700 nm photon from each one)
[22] [23] The genes that encode the individual proteins are contained in both the cell nucleus and the mitochondrial genome, as is the case for many enzymes present in the mitochondrion. The reaction that is catalyzed by this enzyme is the two electron oxidation of NADH by coenzyme Q10 or ubiquinone (represented as Q in the equation below), a ...
Ferredoxin: NADP + reductase is the last enzyme in the transfer of electrons during photosynthesis from photosystem I to NADPH. [2] The NADPH is then used as a reducing equivalent in the reactions of the Calvin cycle. [2] Electron cycling from ferredoxin to NADPH only occurs in the light in part because FNR activity is inhibited in the dark. [11]