Search results
Results from the WOW.Com Content Network
If a tensor A is defined on a vector fields set X(M) over a module M, we call A a tensor field on M. [1] Many mathematical structures called "tensors" are also tensor fields. For example, the Riemann curvature tensor is a tensor field as it associates a tensor to each point of a Riemannian manifold, which is a topological space.
The stresses inside a solid body or fluid [28] are described by a tensor field. The stress tensor and strain tensor are both second-order tensor fields, and are related in a general linear elastic material by a fourth-order elasticity tensor field. In detail, the tensor quantifying stress in a 3-dimensional solid object has components that can ...
The electromagnetic tensor, conventionally labelled F, is defined as the exterior derivative of the electromagnetic four-potential, A, a differential 1-form: [1] [2] = . Therefore, F is a differential 2-form— an antisymmetric rank-2 tensor field—on Minkowski space. In component form,
A field can be classified as a scalar field, a vector field, a spinor field or a tensor field according to whether the represented physical quantity is a scalar, a vector, a spinor, or a tensor, respectively. A field has a consistent tensorial character wherever it is defined: i.e. a field cannot be a scalar field somewhere and a vector field ...
The metric tensor is an example of a tensor field. The components of a metric tensor in a coordinate basis take on the form of a symmetric matrix whose entries transform covariantly under changes to the coordinate system. Thus a metric tensor is a covariant symmetric tensor.
For some materials that have more complex responses to electromagnetic fields, these properties can be represented by tensors, with time-dependence related to the material's ability to respond to rapid field changes (dispersion (optics), Green–Kubo relations), and possibly also field dependencies representing nonlinear and/or nonlocal ...
which are similar to the Maxwell equations (when written in tensor notation). More specifically, these are the Yang–Mills equations for quark and gluon fields. The color charge four-current is the source of the gluon field strength tensor, analogous to the electromagnetic four-current as the source of the electromagnetic tensor. It is given by
A scalar field is a tensor field of order zero, [3] and the term "scalar field" may be used to distinguish a function of this kind with a more general tensor field, density, or differential form. The scalar field of ((+)) oscillating as increases. Red represents positive values, purple represents negative values, and sky blue represents ...