Ad
related to: electromagnetic field tensorzoro.com has been visited by 1M+ users in the past month
- Contact Us
Call Or Email Zoro!
Talk To a Customer Service Expert.
- Brands
7,000+ Trusted Brands.
Millions of Customers Choose Zoro!
- Zoro Brand products
High-value options to more
expensive name brands!
- Shop Business Essentials
Prepare for the New Normal
Safety & Prep Supplies Available
- Contact Us
Search results
Results from the WOW.Com Content Network
The electromagnetic tensor, conventionally labelled F, is defined as the exterior derivative of the electromagnetic four-potential, A, a differential 1-form: [1] [2] = . Therefore, F is a differential 2-form— an antisymmetric rank-2 tensor field—on Minkowski space. In component form,
The electromagnetic tensor is the combination of the electric and magnetic fields into a covariant antisymmetric tensor whose entries are B-field quantities. [1] = (/ / / / / /) and the result of raising its indices is = = (/ / / / / /), where E is the electric field, B the magnetic field, and c the speed of light.
For some materials that have more complex responses to electromagnetic fields, these properties can be represented by tensors, with time-dependence related to the material's ability to respond to rapid field changes (dispersion (optics), Green–Kubo relations), and possibly also field dependencies representing nonlinear and/or nonlocal ...
This is often described by saying that the electric field and magnetic field are two interrelated aspects of a single object, called the electromagnetic field. Indeed, the entire electromagnetic field can be represented in a single rank-2 tensor called the electromagnetic tensor ; see below.
An electromagnetic field (also EM field) is a physical field, mathematical functions of position and time, representing the influences on and due to electric charges. [1] The field at any point in space and time can be regarded as a combination of an electric field and a magnetic field .
The electromagnetic field is a covariant antisymmetric tensor of degree 2, which can be defined in terms of the electromagnetic potential by =.. To see that this equation is invariant, we transform the coordinates as described in the classical treatment of tensors: ¯ = ¯ ¯ ¯ ¯ = ¯ (¯) ¯ (¯) = ¯ ¯ + ¯ ¯ ¯ ¯ ¯ ¯ = ¯ ¯ ¯ ¯ = ¯ ¯ = ¯ ¯.
In the tensor calculus formulation, the electromagnetic tensor F αβ is an antisymmetric covariant order 2 tensor; the four-potential, A α, is a covariant vector; the current, J α, is a vector; the square brackets, [ ], denote antisymmetrization of indices; ∂ α is the partial derivative with respect to the coordinate, x α.
A null electromagnetic field is characterised by = =. In this case, the invariants reveal that the electric and magnetic fields are perpendicular and that they are of the same magnitude (in geometrised units). An example of a null field is a plane electromagnetic wave in Minkowski space.
Ad
related to: electromagnetic field tensorzoro.com has been visited by 1M+ users in the past month