enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Tensor field - Wikipedia

    en.wikipedia.org/wiki/Tensor_field

    In mathematics and physics, a tensor field is a function assigning a tensor to each point of a region of a mathematical space (typically a Euclidean space or manifold) or of the physical space. Tensor fields are used in differential geometry , algebraic geometry , general relativity , in the analysis of stress and strain in material object, and ...

  3. Tensor - Wikipedia

    en.wikipedia.org/wiki/Tensor

    The definition of a tensor as a multidimensional array satisfying a transformation law traces back to the work of Ricci. [1] An equivalent definition of a tensor uses the representations of the general linear group. There is an action of the general linear group on the set of all ordered bases of an n-dimensional vector space.

  4. Field (physics) - Wikipedia

    en.wikipedia.org/wiki/Field_(physics)

    Field theories, mathematical descriptions of how field values change in space and time, are ubiquitous in physics. For instance, the electric field is another rank-1 tensor field, while electrodynamics can be formulated in terms of two interacting vector fields at each point in spacetime, or as a single-rank 2-tensor field. [5] [6] [7]

  5. Mathematics of general relativity - Wikipedia

    en.wikipedia.org/wiki/Mathematics_of_general...

    A tensor field is then defined as a map from the manifold to the tensor bundle, each point being associated with a tensor at . The notion of a tensor field is of major importance in GR. For example, the geometry around a star is described by a metric tensor at each point, so at each point of the spacetime the value of the metric should be given ...

  6. Scalar field - Wikipedia

    en.wikipedia.org/wiki/Scalar_field

    Mathematically, a scalar field on a region U is a real or complex-valued function or distribution on U. [1] [2] The region U may be a set in some Euclidean space, Minkowski space, or more generally a subset of a manifold, and it is typical in mathematics to impose further conditions on the field, such that it be continuous or often continuously differentiable to some order.

  7. Einstein field equations - Wikipedia

    en.wikipedia.org/wiki/Einstein_field_equations

    The Einstein field equations (EFE) may be written in the form: [5] [1] + = EFE on the wall of the Rijksmuseum Boerhaave in Leiden, Netherlands. where is the Einstein tensor, is the metric tensor, is the stress–energy tensor, is the cosmological constant and is the Einstein gravitational constant.

  8. Metric tensor - Wikipedia

    en.wikipedia.org/wiki/Metric_tensor

    In the mathematical field of differential geometry, a metric tensor (or simply metric) is an additional structure on a manifold M (such as a surface) that allows defining distances and angles, just as the inner product on a Euclidean space allows defining distances and angles there.

  9. Curl (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Curl_(mathematics)

    Interchanging the vector field v and ∇ operator, we arrive at the cross product of a vector field with curl of a vector field: = () , where ∇ F is the Feynman subscript notation, which considers only the variation due to the vector field F (i.e., in this case, v is treated as being constant in space).