Search results
Results from the WOW.Com Content Network
In mathematics, a quotient algebra is the result of partitioning the elements of an algebraic structure using a congruence relation. Quotient algebras are also called factor algebras. Here, the congruence relation must be an equivalence relation that is additionally compatible with all the operations of the algebra, in the formal sense ...
The product is one type of algebra for random variables: Related to the product distribution are the ratio distribution, sum distribution (see List of convolutions of probability distributions) and difference distribution. More generally, one may talk of combinations of sums, differences, products and ratios.
If the random variable can take on only a finite number of values, the "conditions" are that the variable can only take on a subset of those values. More formally, in the case when the random variable is defined over a discrete probability space , the "conditions" are a partition of this probability space.
Place the result (+3) below the bar. 3x has been divided leaving no remainder, and can therefore be marked as used. The result 3 is then multiplied by the second term in the divisor −3 = −9. Determine the partial remainder by subtracting −4 − (−9) = 5. Mark −4 as used and place the new remainder 5 above it.
The question of when this happens is rather subtle: for example, for the localization of k[x, y, z]/(x 2 + y 3 + z 5) at the prime ideal (x, y, z), both the local ring and its completion are UFDs, but in the apparently similar example of the localization of k[x, y, z]/(x 2 + y 3 + z 7) at the prime ideal (x, y, z) the local ring is a UFD but ...
In linear algebra, a quotient space is a vector space formed by taking a quotient group, where the quotient homomorphism is a linear map. By extension, in abstract algebra, the term quotient space may be used for quotient modules, quotient rings, quotient groups, or any quotient algebra. However, the use of the term for the more general cases ...
As an example, in the polynomial ring k [X,Y] consider the ideal generated by the irreducible polynomial Y 2 − X 3 and form the field of fractions of the quotient ring k [X,Y]/(Y 2 − X 3). This is a function field of one variable over k; it can also be written as () (with degree 2 over ()) or as () (with degree 3 over ()). We see that the ...
The main computer algebra systems (Maple, Mathematica, SageMath, PARI/GP) have each a variant of this method as the default algorithm for the real roots of a polynomial. The class of methods is based on converting the problem of finding polynomial roots to the problem of finding eigenvalues of the companion matrix of the polynomial, [ 1 ] in ...