enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Atomic orbital - Wikipedia

    en.wikipedia.org/wiki/Atomic_orbital

    Fundamentally, an atomic orbital is a one-electron wave function, even though many electrons are not in one-electron atoms, and so the one-electron view is an approximation. When thinking about orbitals, we are often given an orbital visualization heavily influenced by the Hartree–Fock approximation, which is one way to reduce the ...

  3. Electron configuration - Wikipedia

    en.wikipedia.org/wiki/Electron_configuration

    In each term of an electron configuration, n is the positive integer that precedes each orbital letter (helium's electron configuration is 1s 2, therefore n = 1, and the orbital contains two electrons). An atom's nth electron shell can accommodate 2n 2 electrons. For example, the first shell can accommodate two electrons, the second shell eight ...

  4. Shielding effect - Wikipedia

    en.wikipedia.org/wiki/Shielding_effect

    The wider the electron shells are in space, the weaker is the electric interaction between the electrons and the nucleus due to screening. Further, because of differences in orbital penetration, we can order the screening strength, S, that electrons in a given orbital (s, p, d, or f) provide to the rest of the electrons thusly: > > > ().

  5. Electron shell - Wikipedia

    en.wikipedia.org/wiki/Electron_shell

    In chemistry and atomic physics, an electron shell may be thought of as an orbit that electrons follow around an atom's nucleus. The closest shell to the nucleus is called the "1 shell" (also called the "K shell"), followed by the "2 shell" (or "L shell"), then the "3 shell" (or "M shell"), and so on further and further from the nucleus.

  6. Atom - Wikipedia

    en.wikipedia.org/wiki/Atom

    The electron cloud is a region inside the potential well where each electron forms a type of three-dimensional standing wave—a wave form that does not move relative to the nucleus. This behavior is defined by an atomic orbital , a mathematical function that characterises the probability that an electron appears to be at a particular location ...

  7. Quantum number - Wikipedia

    en.wikipedia.org/wiki/Quantum_number

    An electron state has spin number s = ⁠ 1 / 2 ⁠, consequently m s will be + ⁠ 1 / 2 ⁠ ("spin up") or - ⁠ 1 / 2 ⁠ "spin down" states. Since electron are fermions they obey the Pauli exclusion principle: each electron state must have different quantum numbers. Therefore, every orbital will be occupied with at most two electrons, one ...

  8. Molecular orbital theory - Wikipedia

    en.wikipedia.org/wiki/Molecular_orbital_theory

    An anti-bonding orbital concentrates electron density "behind" each nucleus (i.e. on the side of each atom which is farthest from the other atom), and so tends to pull each of the two nuclei away from the other and actually weaken the bond between the two nuclei.

  9. Energy level - Wikipedia

    en.wikipedia.org/wiki/Energy_level

    An electron transition in a molecule's bond from a ground state to an excited state may have a designation such as σ → σ*, π → π*, or n → π* meaning excitation of an electron from a σ bonding to a σ antibonding orbital, from a π bonding to a π antibonding orbital, or from an n non-bonding to a π antibonding orbital. [4] [5 ...