Search results
Results from the WOW.Com Content Network
The reciprocal function, the function f(x) that maps x to 1/x, is one of the simplest examples of a function which is its own inverse (an involution). Multiplying by a number is the same as dividing by its reciprocal and vice versa. For example, multiplication by 4/5 (or 0.8) will give the same result as division by 5/4 (or 1.25).
In this discussion, a "term" will refer to a string of numbers being multiplied or divided (that division is simply multiplication by a reciprocal) together. Terms are within the same expression and are combined by either addition or subtraction. For example, take the expression: + There are two terms in this expression.
The congruence relation, modulo m, partitions the set of integers into m congruence classes. Operations of addition and multiplication can be defined on these m objects in the following way: To either add or multiply two congruence classes, first pick a representative (in any way) from each class, then perform the usual operation for integers on the two representatives and finally take the ...
Division is often treated as a special case of multiplication: instead of dividing by a number, it is also possible to multiply by its reciprocal. The reciprocal of a number is 1 divided by that number. For instance, =. [54]
Reciprocal polynomial, a polynomial obtained from another polynomial by reversing its coefficients; Reciprocal rule, a technique in calculus for calculating derivatives of reciprocal functions; Reciprocal spiral, a plane curve; Reciprocal averaging, a statistical technique for aggregating categorical data
The reciprocal of a fraction is another fraction with the numerator and denominator exchanged. The reciprocal of 3 / 7 , for instance, is 7 / 3 . The product of a non-zero fraction and its reciprocal is 1, hence the reciprocal is the multiplicative inverse of a fraction. The reciprocal of a proper fraction is improper, and the ...
The harmonic mean of a set of positive integers is the number of numbers times the reciprocal of the sum of their reciprocals. The optic equation requires the sum of the reciprocals of two positive integers a and b to equal the reciprocal of a third positive integer c. All solutions are given by a = mn + m 2, b = mn + n 2, c = mn.
This, for cyclic fractions with long repetends, allows us to easily predict what the result of multiplying the fraction by any natural number n will be, as long as the repetend is known. A proper prime is a prime p which ends in the digit 1 in base 10 and whose reciprocal in base 10 has a repetend with length p − 1.