enow.com Web Search

  1. Ads

    related to: rational mapping examples math facts multiplication 1 4 numbers
  2. It’s an amazing resource for teachers & homeschoolers - Teaching Mama

    • Digital Games

      Turn study time into an adventure

      with fun challenges & characters.

    • Education.com Blog

      See what's new on Education.com,

      explore classroom ideas, & more.

    • Printable Workbooks

      Download & print 300+ workbooks

      written & reviewed by teachers.

    • Lesson Plans

      Engage your students with our

      detailed lesson plans for K-8.

Search results

  1. Results from the WOW.Com Content Network
  2. Rational mapping - Wikipedia

    en.wikipedia.org/wiki/Rational_mapping

    Formally, a rational map: between two varieties is an equivalence class of pairs (,) in which is a morphism of varieties from a non-empty open set to , and two such pairs (,) and (′ ′, ′) are considered equivalent if and ′ ′ coincide on the intersection ′ (this is, in particular, vacuously true if the intersection is empty, but since is assumed irreducible, this is impossible).

  3. Ruled variety - Wikipedia

    en.wikipedia.org/wiki/Ruled_variety

    For example, the conic x 2 + y 2 + z 2 = 0 in P 2 over the real numbers R is uniruled but not ruled. (The associated curve over the complex numbers C is isomorphic to P 1 and hence is ruled.) In the positive direction, every uniruled variety of dimension at most 2 over an algebraically closed field of characteristic zero is ruled.

  4. Birational geometry - Wikipedia

    en.wikipedia.org/wiki/Birational_geometry

    A birational map from X to Y is a rational map f : X ⇢ Y such that there is a rational map Y ⇢ X inverse to f. A birational map induces an isomorphism from a nonempty open subset of X to a nonempty open subset of Y , and vice versa: an isomorphism between nonempty open subsets of X , Y by definition gives a birational map f : X ⇢ Y .

  5. Rational variety - Wikipedia

    en.wikipedia.org/wiki/Rational_variety

    Lüroth's problem concerns subextensions L of K(X), the rational functions in the single indeterminate X. Any such field is either equal to K or is also rational, i.e. L = K(F) for some rational function F. In geometrical terms this states that a non-constant rational map from the projective line to a curve C can only occur when C also has genus 0.

  6. Rational function - Wikipedia

    en.wikipedia.org/wiki/Rational_function

    In mathematics, a rational function is any function that can be defined by a rational fraction, which is an algebraic fraction such that both the numerator and the denominator are polynomials. The coefficients of the polynomials need not be rational numbers ; they may be taken in any field K .

  7. Rational number - Wikipedia

    en.wikipedia.org/wiki/Rational_number

    In mathematics, "rational" is often used as a noun abbreviating "rational number". The adjective rational sometimes means that the coefficients are rational numbers. For example, a rational point is a point with rational coordinates (i.e., a point whose coordinates are rational numbers); a rational matrix is a matrix of rational numbers; a rational polynomial may be a polynomial with rational ...

  8. Distributive property - Wikipedia

    en.wikipedia.org/wiki/Distributive_property

    When multiplication is mentioned in elementary mathematics, it usually refers to this kind of multiplication. From the point of view of algebra, the real numbers form a field, which ensures the validity of the distributive law. First example (mental and written multiplication)

  9. Algebraic number field - Wikipedia

    en.wikipedia.org/wiki/Algebraic_number_field

    A prominent example of a field is the field of rational numbers, commonly denoted , together with its usual operations of addition and multiplication. Another notion needed to define algebraic number fields is vector spaces .

  1. Ads

    related to: rational mapping examples math facts multiplication 1 4 numbers