Search results
Results from the WOW.Com Content Network
First order LTI systems are characterized by the differential equation + = where τ represents the exponential decay constant and V is a function of time t = (). The right-hand side is the forcing function f(t) describing an external driving function of time, which can be regarded as the system input, to which V(t) is the response, or system output.
It is the time required to charge the capacitor, through the resistor, from an initial charge voltage of zero to approximately 63.2% of the value of an applied DC voltage, or to discharge the capacitor through the same resistor to approximately 36.8% of its initial charge voltage.
Continuous charge distribution. The volume charge density ρ is the amount of charge per unit volume (cube), surface charge density σ is amount per unit surface area (circle) with outward unit normal n̂, d is the dipole moment between two point charges, the volume density of these is the polarization density P.
The hole mobility is defined by a similar equation: =. Both electron and hole mobilities are positive by definition. Usually, the electron drift velocity in a material is directly proportional to the electric field, which means that the electron mobility is a constant (independent of the electric field).
By contrast, subtracting equation (2) from equation (1) results in an equation that describes how the vector r = x 1 − x 2 between the masses changes with time. The solutions of these independent one-body problems can be combined to obtain the solutions for the trajectories x 1 ( t ) and x 2 ( t ) .
Solve this equation for the coordinates R to obtain = (), where M is the total mass in the volume. If a continuous mass distribution has uniform density, which means that ρ is constant, then the center of mass is the same as the centroid of the volume.
the total electric charge density (total charge per unit volume), ρ, and; the total electric current density (total current per unit area), J. The universal constants appearing in the equations (the first two ones explicitly only in the SI formulation) are: the permittivity of free space, ε 0, and; the permeability of free space, μ 0, and
They appear in the Butler–Volmer equation and related expressions. The symmetry factor and the charge transfer coefficient are dimensionless. [1] According to an IUPAC definition, [2] for a reaction with a single rate-determining step, the charge transfer coefficient for a cathodic reaction (the cathodic transfer coefficient, α c) is defined as: