Search results
Results from the WOW.Com Content Network
If a pop operation on the stack causes the stack pointer to move past the origin of the stack, a stack underflow occurs. If a push operation causes the stack pointer to increment or decrement beyond the maximum extent of the stack, a stack overflow occurs. Some environments that rely heavily on stacks may provide additional operations, for example:
pop: Pop value from the stack. Base instruction 0xFE 0x1E readonly. Specify that the subsequent array address operation performs no type check at runtime, and that it returns a controlled-mutability managed pointer. Prefix to instruction 0xFE 0x1D refanytype: Push the type token stored in a typed reference. Object model instruction 0xC2 ...
In each step, it chooses a transition by indexing a table by input symbol, current state, and the symbol at the top of the stack. A pushdown automaton can also manipulate the stack, as part of performing a transition. The manipulation can be to push a particular symbol to the top of the stack, or to pop off the top of the stack.
A push operation decrements the pointer and copies the data to the stack; a pop operation copies data from the stack and then increments the pointer. Each procedure called in the program stores procedure return information (in yellow) and local data (in other colors) by pushing them onto the stack.
(In the examples that follow, a, b, and c are (direct or calculated) addresses referring to memory cells, while reg1 and so on refer to machine registers.) C = A+B 0-operand (zero-address machines), so called stack machines: All arithmetic operations take place using the top one or two positions on the stack: [9] push a, push b, add, pop c.
Typically push and pop are translated into multiple micro-ops, to separately add/subtract the stack pointer, and perform the load/store in memory. [3] Newer processors contain a dedicated stack engine to optimize stack operations. Pentium M was the first x86 processor to introduce a stack engine.
After processing all the input, the stack contains 56, which is the answer.. From this, the following can be concluded: a stack-based programming language has only one way to handle data, by taking one piece of data from atop the stack, termed popping, and putting data back atop the stack, termed pushing.
For example, a stack may have operations push(x) and pop(), that operate on the only existing stack. ADT definitions in this style can be easily rewritten to admit multiple coexisting instances of the ADT, by adding an explicit instance parameter (like S in the stack example below) to every operation that uses or modifies the implicit instance.