Search results
Results from the WOW.Com Content Network
In spherical coordinates in N dimensions, with the parametrization x = rθ ∈ R N with r representing a positive real radius and θ an element of the unit sphere S N−1, = + + where Δ S N−1 is the Laplace–Beltrami operator on the (N − 1)-sphere, known as the spherical Laplacian.
This article uses the standard notation ISO 80000-2, which supersedes ISO 31-11, for spherical coordinates (other sources may reverse the definitions of θ and φ): . The polar angle is denoted by [,]: it is the angle between the z-axis and the radial vector connecting the origin to the point in question.
Del operator, represented by the nabla symbol. Del, or nabla, is an operator used in mathematics (particularly in vector calculus) as a vector differential operator, usually represented by the nabla symbol ∇. When applied to a function defined on a one-dimensional domain, it denotes the standard derivative of the function as defined in calculus.
One can also give an intrinsic description of the Laplace–Beltrami operator on the sphere in a normal coordinate system. Let (ϕ, ξ) be spherical coordinates on the sphere with respect to a particular point p of the sphere (the "north pole"), that is geodesic polar coordinates with respect to p.
As is the case with spherical coordinates and spherical harmonics, Laplace's equation may be solved by the method of separation of variables to yield solutions in the form of oblate spheroidal harmonics, which are convenient to use when boundary conditions are defined on a surface with a constant oblate spheroidal coordinate.
In mathematics and physics, Laplace's equation is a second-order partial differential equation named after Pierre-Simon Laplace, who first studied its properties.This is often written as = or =, where = = is the Laplace operator, [note 1] is the divergence operator (also symbolized "div"), is the gradient operator (also symbolized "grad"), and (,,) is a twice-differentiable real-valued function.
Once the radius is fixed, the three coordinates (r, θ, φ), known as a 3-tuple, provide a coordinate system on a sphere, typically called the spherical polar coordinates. The plane passing through the origin and perpendicular to the polar axis (where the polar angle is a right angle ) is called the reference plane (sometimes fundamental plane ).
Introducing r, θ, and φ for the spherical polar coordinates of the 3-vector r, and assuming that is a (smooth) function , we can write the Laplace equation in the following form = (^) =,, where L 2 is the square of the nondimensional angular momentum operator, ^ = ().