Search results
Results from the WOW.Com Content Network
The molecular form C 12 H 22 O 11 (molar mass: 342.29 g/mol, exact mass : 342.116212) may refer to: Disaccharides. Allolactose; ... Sucrose (table sugar) Trehalose;
H 2 SO 4 (catalyst) + C 12 H 22 O 11 → 12 C + 11 H 2 O + heat (and some H 2 O + SO 3 as a result of the heat). The formula for sucrose's decomposition can be represented as a two-step reaction: the first simplified reaction is dehydration of sucrose to pure carbon and water, and then carbon is oxidised to CO 2 by O 2 from air. C 12 H 22 O 11 ...
Chemical formula Synonyms CAS number C 10 H 16 N 2 O 8: Ethylenediaminetetraacetic acid (EDTA) 6381–92–6 C 12 H 22 O 11: sucrose: 57–50–1 C 18 H 29 O 3 S: sodium dodecyl benzenesulfonate: 2155–30–0 C 20 H 25 N 30: Lysergic acid diethylamide (LSD) 50–37–3 C 123 H 193 N 35 O 37: Common serum albumin (macromolecule) 9048–49–1 ...
The molecular formula C 12 H 22 O (molar mass: 182.307 g/mol, exact mass: 182.1671 u) may refer to: Cyclododecanone; Geosmin
In chemistry, the molar mass (M) (sometimes called molecular weight or formula weight, but see related quantities for usage) of a chemical compound is defined as the ratio between the mass and the amount of substance (measured in moles) of any sample of the compound. [1] The molar mass is a bulk, not molecular, property of a substance.
Lactose, or milk sugar, is a disaccharide composed of galactose and glucose and has the molecular formula C 12 H 22 O 11.Lactose makes up around 2–8% of milk (by mass). The name comes from lact (gen. lactis), the Latin word for milk, plus the suffix -ose used to name sugars.
Chemical substance – Form of matter; List of alchemical substances; List of chemical elements; List of minerals – List of minerals with Wikipedia articles; List of named alloys; List of straight-chain alkanes; Polyatomic ion – Ion containing two or more atoms; Exotic molecule – a compound containing one or more exotic atoms
The two glucose units are in the pyranose form and are joined by an O-glycosidic bond, with the first carbon (C 1) of the first glucose linked to the fourth carbon (C 4) of the second glucose, indicated as (1→4). The link is characterized as α because the glycosidic bond to the anomeric carbon (C 1) is in the opposite plane from the CH