Search results
Results from the WOW.Com Content Network
4-Toluenesulfonyl chloride (p-toluenesulfonyl chloride, toluene-p-sulfonyl chloride) is an organic compound with the formula CH 3 C 6 H 4 SO 2 Cl. This white, malodorous solid is a reagent widely used in organic synthesis. [2] Abbreviated TsCl or TosCl, it is a derivative of toluene and contains a sulfonyl chloride (−SO 2 Cl) functional group.
In chemistry, the rate equation (also known as the rate law or empirical differential rate equation) is an empirical differential mathematical expression for the reaction rate of a given reaction in terms of concentrations of chemical species and constant parameters (normally rate coefficients and partial orders of reaction) only. [1]
Chemical kinetics, also known as reaction kinetics, is the branch of physical chemistry that is concerned with understanding the rates of chemical reactions. It is different from chemical thermodynamics, which deals with the direction in which a reaction occurs but in itself tells nothing about its rate.
Using the Eyring equation, there is a straightforward relationship between ΔG ‡, first-order rate constants, and reaction half-life at a given temperature. At 298 K, a reaction with Δ G ‡ = 23 kcal/mol has a rate constant of k ≈ 8.4 × 10 −5 s −1 and a half life of t 1/2 ≈ 2.3 hours, figures that are often rounded to k ~ 10 −4 s ...
Tosyl group (blue) with a generic "R" group attached Tosylate group with a generic "R" group attached. Note the extra oxygen, compared to plain tosyl. In organic chemistry, a toluenesulfonyl group (tosyl group, abbreviated Ts or Tos [nb 1]) is a univalent functional group with the chemical formula −SO 2 −C 6 H 4 −CH 3.
where A and B are reactants C is a product a, b, and c are stoichiometric coefficients,. the reaction rate is often found to have the form: = [] [] Here is the reaction rate constant that depends on temperature, and [A] and [B] are the molar concentrations of substances A and B in moles per unit volume of solution, assuming the reaction is taking place throughout the volume of the ...
In chemical kinetics, the overall rate of a reaction is often approximately determined by the slowest step, known as the rate-determining step (RDS or RD-step [1] or r/d step [2] [3]) or rate-limiting step. For a given reaction mechanism, the prediction of the corresponding rate equation (for comparison with the experimental rate law) is often ...
Since the reaction rate determines the reaction timescale, the exact formula for the Damköhler number varies according to the rate law equation. For a general chemical reaction A → B following the Power law kinetics of n-th order , the Damköhler number for a convective flow system is defined as: