enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Confidence distribution - Wikipedia

    en.wikipedia.org/wiki/Confidence_Distribution

    Classically, a confidence distribution is defined by inverting the upper limits of a series of lower-sided confidence intervals. [15] [16] [page needed] In particular, For every α in (0, 1), let (−∞, ξ n (α)] be a 100α% lower-side confidence interval for θ, where ξ n (α) = ξ n (X n,α) is continuous and increasing in α for each sample X n.

  3. Confidence interval - Wikipedia

    en.wikipedia.org/wiki/Confidence_interval

    Each row of points is a sample from the same normal distribution. The colored lines are 50% confidence intervals for the mean, μ.At the center of each interval is the sample mean, marked with a diamond.

  4. Binomial proportion confidence interval - Wikipedia

    en.wikipedia.org/wiki/Binomial_proportion...

    The probability density function (PDF) for the Wilson score interval, plus PDF s at interval bounds. Tail areas are equal. Since the interval is derived by solving from the normal approximation to the binomial, the Wilson score interval ( , + ) has the property of being guaranteed to obtain the same result as the equivalent z-test or chi-squared test.

  5. Rule of three (statistics) - Wikipedia

    en.wikipedia.org/wiki/Rule_of_three_(statistics)

    The rule can then be derived [2] either from the Poisson approximation to the binomial distribution, or from the formula (1−p) n for the probability of zero events in the binomial distribution. In the latter case, the edge of the confidence interval is given by Pr(X = 0) = 0.05 and hence (1−p) n = .05 so n ln(1–p) = ln .05 ≈ −2

  6. 68–95–99.7 rule - Wikipedia

    en.wikipedia.org/wiki/68–95–99.7_rule

    Diagram showing the cumulative distribution function for the normal distribution with mean (μ) 0 and variance (σ 2) 1. These numerical values "68%, 95%, 99.7%" come from the cumulative distribution function of the normal distribution. The prediction interval for any standard score z corresponds numerically to (1 − (1 − Φ μ,σ 2 (z)) · 2).

  7. Student's t-distribution - Wikipedia

    en.wikipedia.org/wiki/Student's_t-distribution

    The Student's t distribution plays a role in a number of widely used statistical analyses, including Student's t test for assessing the statistical significance of the difference between two sample means, the construction of confidence intervals for the difference between two population means, and in linear regression analysis.

  8. Interval estimation - Wikipedia

    en.wikipedia.org/wiki/Interval_estimation

    For a normal distribution with a known variance, one uses the z-table to create an interval where a confidence level of 100γ% can be obtained centered around the sample mean from a data set of n measurements, .

  9. Confidence region - Wikipedia

    en.wikipedia.org/wiki/Confidence_region

    Confidence regions can be defined for any probability distribution. The experimenter can choose the significance level and the shape of the region, and then the size of the region is determined by the probability distribution. A natural choice is to use as a boundary a set of points with constant (chi-squared) values.