enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Parabola - Wikipedia

    en.wikipedia.org/wiki/Parabola

    The distance between the vertex and the focus, measured along the axis of symmetry, is the "focal length". The "latus rectum" is the chord of the parabola that is parallel to the directrix and passes through the focus. Parabolas can open up, down, left, right, or in some other arbitrary direction.

  3. Focus (geometry) - Wikipedia

    en.wikipedia.org/wiki/Focus_(geometry)

    The ellipse thus generated has its second focus at the center of the directrix circle, and the ellipse lies entirely within the circle. For the parabola, the center of the directrix moves to the point at infinity (see Projective geometry). The directrix "circle" becomes a curve with zero curvature, indistinguishable from a straight line.

  4. Conic section - Wikipedia

    en.wikipedia.org/wiki/Conic_section

    Conic sections of varying eccentricity sharing a focus point and directrix line, including an ellipse (red, e = 1/2), a parabola (green, e = 1), and a hyperbola (blue, e = 2). The conic of eccentricity 0 in this figure is an infinitesimal circle centered at the focus, and the conic of eccentricity ∞ is an infinitesimally separated pair of lines.

  5. Fortune's algorithm - Wikipedia

    en.wikipedia.org/wiki/Fortune's_algorithm

    The beach line progresses by keeping each parabola base exactly halfway between the points initially swept over with the sweep line, and the new position of the sweep line. Mathematically, this means each parabola is formed by using the sweep line as the directrix and the input point as the focus.

  6. Eccentricity (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Eccentricity_(mathematics)

    A family of conic sections of varying eccentricity share a focus point and directrix line, including an ellipse (red, e = 1/2), a parabola (green, e = 1), and a hyperbola (blue, e = 2). The conic of eccentricity 0 in this figure is an infinitesimal circle centered at the focus, and the conic of eccentricity ∞ is an infinitesimally separated ...

  7. Translation of axes - Wikipedia

    en.wikipedia.org/wiki/Translation_of_axes

    by using a translation of axes, determine whether the locus of the equation is a parabola, ellipse, or hyperbola. Determine foci (or focus), vertices (or vertex), and eccentricity. Solution: To complete the square in x and y, write the equation in the form (+) + =

  8. Semi-major and semi-minor axes - Wikipedia

    en.wikipedia.org/wiki/Semi-major_and_semi-minor_axes

    In an ellipse, the semi-major axis is the geometric mean of the distance from the center to either focus and the distance from the center to either directrix. The semi-minor axis of an ellipse runs from the center of the ellipse (a point halfway between and on the line running between the foci) to the edge of the ellipse. The semi-minor axis is ...

  9. Straightedge and compass construction - Wikipedia

    en.wikipedia.org/wiki/Straightedge_and_compass...

    The same set of points can often be constructed using a smaller set of tools. For example, using a compass, straightedge, and a piece of paper on which we have the parabola y=x 2 together with the points (0,0) and (1,0), one can construct any complex number that has a solid construction. Likewise, a tool that can draw any ellipse with already ...