Search results
Results from the WOW.Com Content Network
Solar irradiance spectrum at top of atmosphere, on a linear scale and plotted against wavenumber. The solar constant (G SC) measures the amount of energy received by a given area one astronomical unit away from the Sun. More specifically, it is a flux density measuring mean solar electromagnetic radiation (total solar irradiance) per unit
Total solar irradiance (TSI) [22] changes slowly on decadal and longer timescales. The variation during solar cycle 21 was about 0.1% (peak-to-peak). [23] In contrast to older reconstructions, [24] most recent TSI reconstructions point to an increase of only about 0.05% to 0.1% between the 17th century Maunder Minimum and the present.
For example, when the sun is more than about 60° above the horizon (<30°) the solar intensity is about 1000 W/m 2 (from equation I.1 as shown in the above table), whereas when the sun is only 15° above the horizon (=75°) the solar intensity is still about 600 W/m 2 or 60% of its maximum level; and at only 5° above the horizon still 27% of ...
The updated figure (right) shows the variations and contrasts solar cycles 14 and 24, a century apart, that are quite similar in all solar activity measures (in fact cycle 24 is slightly less active than cycle 14 on average), yet the global mean air surface temperature is more than 1 degree Celsius higher for cycle 24 than cycle 14, showing the ...
The solar wind is observed to exist in two fundamental states, termed the slow solar wind and the fast solar wind, though their differences extend well beyond their speeds. In near-Earth space, the slow solar wind is observed to have a velocity of 300–500 km/s , a temperature of ~ 100 kilokelvin and a composition that is a close match to the ...
The F10.7 index is a measure of the solar radio flux per unit frequency at a wavelength of 10.7 cm, near the peak of the observed solar radio emission. F10.7 is often expressed in SFU or solar flux units (1 SFU = 10 −22 W m −2 Hz −1). It represents a measure of diffuse, nonradiative coronal plasma heating.
The relative spectral flux density is also useful if we wish to compare a source's flux density at one wavelength with the same source's flux density at another wavelength; for example, if we wish to demonstrate how the Sun's spectrum peaks in the visible part of the EM spectrum, a graph of the Sun's relative spectral flux density will suffice.
It was also contacted in 2003 when it was a distance of 7.6 billion miles from Earth (82 AU), but no instrument data about the solar wind was returned then. [68] [69] Voyager 1 surpassed the radial distance from the Sun of Pioneer 10 at 69.4 AU on 17 February 1998, because it was traveling faster, gaining about 1.02 AU per year. [70]