Search results
Results from the WOW.Com Content Network
The type-generic macros that correspond to a function that is defined for only real numbers encapsulates a total of 3 different functions: float, double and long double variants of the function. The C++ language includes native support for function overloading and thus does not provide the <tgmath.h> header even as a compatibility feature.
Graphs of functions commonly used in the analysis of algorithms, showing the number of operations versus input size for each function. The following tables list the computational complexity of various algorithms for common mathematical operations.
For 8-bit integers the table of quarter squares will have 2 9 −1=511 entries (one entry for the full range 0..510 of possible sums, the differences using only the first 256 entries in range 0..255) or 2 9 −1=511 entries (using for negative differences the technique of 2-complements and 9-bit masking, which avoids testing the sign of ...
The definition of matrix multiplication is that if C = AB for an n × m matrix A and an m × p matrix B, then C is an n × p matrix with entries = =. From this, a simple algorithm can be constructed which loops over the indices i from 1 through n and j from 1 through p, computing the above using a nested loop:
a = b: sg | a − b | (Kleene's convention was to represent true by 0 and false by 1; presently, especially in computers, the most common convention is the reverse, namely to represent true by 1 and false by 0, which amounts to changing sg into ~sg here and in the next item) a < b: sg( a' ∸ b )
The Barrett multiplication previously described requires a constant operand b to pre-compute [] ahead of time. Otherwise, the operation is not efficient. Otherwise, the operation is not efficient. It is common to use Montgomery multiplication when both operands are non-constant as it has better performance.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
In mathematics, the hyperoperation sequence [nb 1] is an infinite sequence of arithmetic operations (called hyperoperations in this context) [1] [11] [13] that starts with a unary operation (the successor function with n = 0).