enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Azimuthal quantum number - Wikipedia

    en.wikipedia.org/wiki/Azimuthal_quantum_number

    An electron's angular momentum, L, is related to its quantum number ℓ by the following equation: = (+), where ħ is the reduced Planck constant, L is the orbital angular momentum operator and is the wavefunction of the electron.

  3. Angular momentum operator - Wikipedia

    en.wikipedia.org/wiki/Angular_momentum_operator

    In quantum mechanics, the angular momentum operator is one of several related operators analogous to classical angular momentum. The angular momentum operator plays a central role in the theory of atomic and molecular physics and other quantum problems involving rotational symmetry. Being an observable, its eigenfunctions represent the ...

  4. Quantum number - Wikipedia

    en.wikipedia.org/wiki/Quantum_number

    The azimuthal quantum number, also known as the orbital angular momentum quantum number, describes the subshell, and gives the magnitude of the orbital angular momentum through the relation L 2 = ℏ 2 ℓ ( ℓ + 1 ) . {\displaystyle L^{2}=\hbar ^{2}\ell (\ell +1).}

  5. List of equations in quantum mechanics - Wikipedia

    en.wikipedia.org/wiki/List_of_equations_in...

    To solve from the Schrödinger equation: varies with situation and number of particles Wavefunction probability density: ... j = total angular momentum quantum number;

  6. Angular momentum - Wikipedia

    en.wikipedia.org/wiki/Angular_momentum

    The trivial case of the angular momentum of a body in an orbit is given by = where is the mass of the orbiting object, is the orbit's frequency and is the orbit's radius.. The angular momentum of a uniform rigid sphere rotating around its axis, instead, is given by = where is the sphere's mass, is the frequency of rotation and is the sphere's radius.

  7. Spin quantum number - Wikipedia

    en.wikipedia.org/wiki/Spin_quantum_number

    Here L is the total orbital angular momentum quantum number. [18] For atoms with a well-defined S, the multiplicity of a state is defined as 2 S + 1. This is equal to the number of different possible values of the total (orbital plus spin) angular momentum J for a given (L, S) combination, provided that S ≤ L (the typical case).

  8. Magnetic quantum number - Wikipedia

    en.wikipedia.org/wiki/Magnetic_quantum_number

    The spin magnetic quantum number m s specifies the z-axis component of the spin angular momentum for a particle having spin quantum number s. For an electron, s is 1 ⁄ 2 , and m s is either + 1 ⁄ 2 or − 1 ⁄ 2 , often called "spin-up" and "spin-down", or α and β.

  9. Total angular momentum quantum number - Wikipedia

    en.wikipedia.org/wiki/Total_angular_momentum...

    The associated quantum number is the main total angular momentum quantum number j. It can take the following range of values, jumping only in integer steps: [ 1 ] | ℓ − s | ≤ j ≤ ℓ + s {\displaystyle \vert \ell -s\vert \leq j\leq \ell +s} where ℓ is the azimuthal quantum number (parameterizing the orbital angular momentum) and s is ...