Search results
Results from the WOW.Com Content Network
For example, 1 / 4 , 5 / 6 , and −101 / 100 are all irreducible fractions. On the other hand, 2 / 4 is reducible since it is equal in value to 1 / 2 , and the numerator of 1 / 2 is less than the numerator of 2 / 4 . A fraction that is reducible can be reduced by dividing both the numerator ...
A repeating decimal or recurring decimal is a decimal representation of a number whose digits are eventually periodic (that is, after some place, the same sequence of digits is repeated forever); if this sequence consists only of zeros (that is if there is only a finite number of nonzero digits), the decimal is said to be terminating, and is not considered as repeating.
These include improper fractions as well as mixed numbers. Continued fraction: An expression obtained through an iterative process of representing a number as the sum of its integer part and the reciprocal of another number, then writing this other number as the sum of its integer part and another reciprocal, and so on.
The Archimedean property: any point x before the finish line lies between two of the points P n (inclusive).. It is possible to prove the equation 0.999... = 1 using just the mathematical tools of comparison and addition of (finite) decimal numbers, without any reference to more advanced topics such as series and limits.
1 ⁄ 5: 0.2 Vulgar Fraction One Fifth 2155 8533 ⅖ 2 ⁄ 5: 0.4 Vulgar Fraction Two Fifths 2156 8534 ⅗ 3 ⁄ 5: 0.6 Vulgar Fraction Three Fifths 2157 8535 ⅘ 4 ⁄ 5: 0.8 Vulgar Fraction Four Fifths 2158 8536 ⅙ 1 ⁄ 6: 0.166... Vulgar Fraction One Sixth 2159 8537 ⅚ 5 ⁄ 6: 0.833... Vulgar Fraction Five Sixths 215A 8538 ⅛ 1 ⁄ 8: 0 ...
where the repeating block is indicated by dots over its first and last terms. [2] If the initial non-repeating block is not present – that is, if k = -1, a 0 = a m and = [;,, …, ¯], the regular continued fraction x is said to be purely periodic.
Therefore, the result is usually rounded to 5.61. Just as the same fraction can be written in more than one way, the same real number may have more than one decimal representation. For example, 0.999..., 1.0, 1.00, 1.000, ..., all represent the natural number 1. A given real number has only the following decimal representations: an ...
Also the converse is true: The decimal expansion of a rational number is either finite, or endlessly repeating. Finite decimal representations can also be seen as a special case of infinite repeating decimal representations. For example, 36 ⁄ 25 = 1.44 = 1.4400000...; the endlessly repeated sequence is the one-digit sequence "0".