enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Rotations in 4-dimensional Euclidean space - Wikipedia

    en.wikipedia.org/wiki/Rotations_in_4-dimensional...

    The rotation is completely specified by specifying the axis planes and the angles of rotation about them. Without loss of generality, these axis planes may be chosen to be the uz - and xy-planes of a Cartesian coordinate system, allowing a simpler visualization of the rotation. In 4D space, the Hopf angles {ξ 1, η, ξ 2} parameterize the 3 ...

  3. Rotation matrix - Wikipedia

    en.wikipedia.org/wiki/Rotation_matrix

    Noting that any identity matrix is a rotation matrix, and that matrix multiplication is associative, we may summarize all these properties by saying that the n × n rotation matrices form a group, which for n > 2 is non-abelian, called a special orthogonal group, and denoted by SO(n), SO(n,R), SO n, or SO n (R), the group of n × n rotation ...

  4. Four-dimensional space - Wikipedia

    en.wikipedia.org/wiki/Four-dimensional_space

    Einstein's concept of spacetime has a Minkowski structure based on a non-Euclidean geometry with three spatial dimensions and one temporal dimension, rather than the four symmetric spatial dimensions of Schläfli's Euclidean 4D space. Single locations in Euclidean 4D space can be given as vectors or 4-tuples, i.e., as ordered lists of numbers ...

  5. Point groups in four dimensions - Wikipedia

    en.wikipedia.org/wiki/Point_groups_in_four...

    1951, A. C. Hurley, Finite rotation groups and crystal classes in four dimensions, Proceedings of the Cambridge Philosophical Society, vol. 47, issue 04, p. 650 [1] 1962 A. L. MacKay Bravais Lattices in Four-dimensional Space [2] 1964 Patrick du Val, Homographies, quaternions and rotations, quaternion-based 4D point groups

  6. Plane of rotation - Wikipedia

    en.wikipedia.org/wiki/Plane_of_rotation

    The two rotation planes span four-dimensional space, so every point in the space can be specified by two points, one on each of the planes. A double rotation has two angles of rotation, one for each plane of rotation. The rotation is specified by giving the two planes and two non-zero angles, α and β (if either angle is zero the rotation is ...

  7. Euclidean plane isometry - Wikipedia

    en.wikipedia.org/wiki/Euclidean_plane_isometry

    In geometry, a Euclidean plane isometry is an isometry of the Euclidean plane, or more informally, a way of transforming the plane that preserves geometrical properties such as length. There are four types: translations , rotations , reflections , and glide reflections (see below § Classification ).

  8. Rotation (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Rotation_(mathematics)

    If a rotation of Minkowski space is in a space-like plane, then this rotation is the same as a spatial rotation in Euclidean space. By contrast, a rotation in a plane spanned by a space-like dimension and a time-like dimension is a hyperbolic rotation , and if this plane contains the time axis of the reference frame, is called a "Lorentz boost".

  9. Clifford torus - Wikipedia

    en.wikipedia.org/wiki/Clifford_torus

    A stereographic projection of a Clifford torus performing a simple rotation Topologically a rectangle is the fundamental polygon of a torus, with opposite edges sewn together. In geometric topology , the Clifford torus is the simplest and most symmetric flat embedding of the Cartesian product of two circles S 1