enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Least absolute deviations - Wikipedia

    en.wikipedia.org/wiki/Least_absolute_deviations

    Least absolute deviations (LAD), also known as least absolute errors (LAE), least absolute residuals (LAR), or least absolute values (LAV), is a statistical optimality criterion and a statistical optimization technique based on minimizing the sum of absolute deviations (also sum of absolute residuals or sum of absolute errors) or the L 1 norm of such values.

  3. Iteratively reweighted least squares - Wikipedia

    en.wikipedia.org/wiki/Iteratively_reweighted...

    IRLS is used to find the maximum likelihood estimates of a generalized linear model, and in robust regression to find an M-estimator, as a way of mitigating the influence of outliers in an otherwise normally-distributed data set, for example, by minimizing the least absolute errors rather than the least square errors.

  4. Errors and residuals - Wikipedia

    en.wikipedia.org/wiki/Errors_and_residuals

    Since this is a biased estimate of the variance of the unobserved errors, the bias is removed by dividing the sum of the squared residuals by df = n − p − 1, instead of n, where df is the number of degrees of freedom (n minus the number of parameters (excluding the intercept) p being estimated - 1). This forms an unbiased estimate of the ...

  5. Mean absolute error - Wikipedia

    en.wikipedia.org/wiki/Mean_absolute_error

    MAE is calculated as the sum of absolute errors (i.e., the Manhattan distance) divided by the sample size: [1] = = | | = = | |. It is thus an arithmetic average of the absolute errors | e i | = | y i − x i | {\displaystyle |e_{i}|=|y_{i}-x_{i}|} , where y i {\displaystyle y_{i}} is the prediction and x i {\displaystyle x_{i}} the true value.

  6. Weighted least squares - Wikipedia

    en.wikipedia.org/wiki/Weighted_least_squares

    Weighted least squares (WLS), also known as weighted linear regression, [1] [2] is a generalization of ordinary least squares and linear regression in which knowledge of the unequal variance of observations (heteroscedasticity) is incorporated into the regression.

  7. Total least squares - Wikipedia

    en.wikipedia.org/wiki/Total_least_squares

    This solution has been rediscovered in different disciplines and is variously known as standardised major axis (Ricker 1975, Warton et al., 2006), [14] [15] the reduced major axis, the geometric mean functional relationship (Draper and Smith, 1998), [16] least products regression, diagonal regression, line of organic correlation, and the least ...

  8. Symmetric mean absolute percentage error - Wikipedia

    en.wikipedia.org/wiki/Symmetric_mean_absolute...

    The absolute difference between A t and F t is divided by half the sum of absolute values of the actual value A t and the forecast value F t. The value of this calculation is summed for every fitted point t and divided again by the number of fitted points n .

  9. Mean absolute percentage error - Wikipedia

    en.wikipedia.org/wiki/Mean_absolute_percentage_error

    Most commonly the absolute percent errors are weighted by the actuals (e.g. in case of sales forecasting, errors are weighted by sales volume). [3] Effectively, this overcomes the 'infinite error' issue. [ 4 ]