enow.com Web Search

  1. Ad

    related to: average value theorem for integrals calculator calculus free

Search results

  1. Results from the WOW.Com Content Network
  2. Mean of a function - Wikipedia

    en.wikipedia.org/wiki/Mean_of_a_function

    In calculus, and especially multivariable calculus, the mean of a function is loosely defined as the average value of the function over its domain. In one variable, the mean of a function f(x) over the interval (a,b) is defined by: [1] ¯ = ().

  3. Mean value theorem - Wikipedia

    en.wikipedia.org/wiki/Mean_value_theorem

    Cauchy's mean value theorem, also known as the extended mean value theorem, is a generalization of the mean value theorem. [ 6 ] [ 7 ] It states: if the functions f {\displaystyle f} and g {\displaystyle g} are both continuous on the closed interval [ a , b ] {\displaystyle [a,b]} and differentiable on the open interval ( a , b ) {\displaystyle ...

  4. List of definite integrals - Wikipedia

    en.wikipedia.org/wiki/List_of_definite_integrals

    In mathematics, the definite integral ∫ a b f ( x ) d x {\displaystyle \int _{a}^{b}f(x)\,dx} is the area of the region in the xy -plane bounded by the graph of f , the x -axis, and the lines x = a and x = b , such that area above the x -axis adds to the total, and that below the x -axis subtracts from the total.

  5. Fundamental theorem of calculus - Wikipedia

    en.wikipedia.org/.../Fundamental_theorem_of_calculus

    From the conjecture and the proof of the fundamental theorem of calculus, calculus as a unified theory of integration and differentiation is started. The first published statement and proof of a rudimentary form of the fundamental theorem, strongly geometric in character, [ 2 ] was by James Gregory (1638–1675).

  6. Integral - Wikipedia

    en.wikipedia.org/wiki/Integral

    The major advance in integration came in the 17th century with the independent discovery of the fundamental theorem of calculus by Leibniz and Newton. [11] The theorem demonstrates a connection between integration and differentiation. This connection, combined with the comparative ease of differentiation, can be exploited to calculate integrals.

  7. Line integral - Wikipedia

    en.wikipedia.org/wiki/Line_integral

    The Cauchy integral theorem may be used to equate the line integral of an analytic function to the same integral over a more convenient curve. It also implies that over a closed curve enclosing a region where f ( z ) is analytic without singularities , the value of the integral is simply zero, or in case the region includes singularities, the ...

  8. Lebesgue integral - Wikipedia

    en.wikipedia.org/wiki/Lebesgue_integral

    The Lebesgue integral describes better how and when it is possible to take limits under the integral sign (via the monotone convergence theorem and dominated convergence theorem). While the Riemann integral considers the area under a curve as made out of vertical rectangles, the Lebesgue definition considers horizontal slabs that are not ...

  9. Difference quotient - Wikipedia

    en.wikipedia.org/wiki/Difference_quotient

    This name is justified by the mean value theorem, which states that for a differentiable function f, its derivative f ′ reaches its mean value at some point in the interval. [5] Geometrically, this difference quotient measures the slope of the secant line passing through the points with coordinates ( a , f ( a )) and ( b , f ( b )).

  1. Ad

    related to: average value theorem for integrals calculator calculus free